Slide 1

Slide 1 text

オブザーバビリティから理解する コンピュータサイエンス ~コンピュータサイエンスが職務境界の問題を見つける~ JTF2021

Slide 2

Slide 2 text

自己紹介 ▪ PN:九龍真乙 ▪ Twitter: @qryuu ▪ SlideShre: https://www.slideshare.net/qryuu ▪ GitHub: https://github.com/qryuu ▪ クックパッド: https://cookpad.com/kitchen/4142562 ▪ Youtube: https://www.youtube.com/channel/UCcPidyLCfGp49pmF4Zb761Q ▪ 専門:Zabbix, New Relic,テクニカルサポート, テクニカルトレーナー 2

Slide 3

Slide 3 text

セッションの目的 ▪ パフォーマンスDataをどのように読み解くのか ▪ その問題は何故発生するのか ▪ 問題は職務境界に存在する事が多いです、その問題を運用の視 点で見つけて見ましょう 3

Slide 4

Slide 4 text

セッションの目的 ▪ オブザーバビリティプラットフォームや監視ツールを使ってい ても、実際にその意味を読み解くにはコンピュータサイエンス の理解が必要です。 ▪ モニタリングツールで何を見てそれをどのように解釈するのか、 なぜそのようなことが起こるのか ▪ 実際の問題を2つ取り上げて解説します。 4

Slide 5

Slide 5 text

今日の課題 ▪ CPU使用率の読み方 – コア毎使用率の意味と計算機概論 ▪ N+1(または1+N)問題 – 見つけ方とその発生原因 5

Slide 6

Slide 6 text

CPU使用率 コア偏り問題は何故発生するのか 6

Slide 7

Slide 7 text

コア毎のCPU使用率 ▪ Zabbixでは ▪ system.cpu.util[0,idle, avg1] ▪ system.cpu.util[1,idle, avg1] ▪ CPUコア毎の使用率を取得 できます。 7

Slide 8

Slide 8 text

コア毎のCPU使用率 ▪ New Relicでは ProcessSampleでコア毎の CPU使用率を取得していま す。 8

Slide 9

Slide 9 text

CPUとは何か ▪ CPUとは、キャッシュから レジスタに値を読み込む ▪ レジスタ同士で演算を行う ▪ キャッシュに必要な情報は メモリや外部記憶装置、外 部入出力装置からやってく る 9 レ ジ ス タ レ ジ ス タ レ ジ ス タ レ ジ ス タ キャッシュ キャッシュ キャッシュ キャッシュ フラグ フラグ

Slide 10

Slide 10 text

CPUと割り込み処理 ▪ 外部記憶装置の入出力は CPUに比べて遅い ▪ 遅いので待っている時間は Iowaitとなる。 ▪ 通信装置の入力は順番通り とは限らない – 順番整理をCPUが行う ▪ パケットが届くとCPUに割 り込み命令が入る 10 CPU メモリ 外部 装置 割り込み

Slide 11

Slide 11 text

通信負荷とコア専有 ▪ 受信パケットは順番通り届かない – 経路毎に先着後着があるので、並べ替えないとデータにならない – 割り込み処理は通常特定のコアに偏る – 現代の処理は通信処理が大きい – パケット処理に1コアが専有され、他のコアは処理したくても処理する データが無い ▪ CPUではなくてNICに処理させるのがハードウェアオフロード 11

Slide 12

Slide 12 text

解決策 ▪ DPDK(Data Plane Development Kit) – CPUを通信専用にして全コアで処理する(ソフトウェアルータ向け) ▪ https://ascii.jp/elem/000/001/691/1691592/ ▪ RSS(Receive-Side Scaling) – NICからの割り込みを複数コアに分散させる ▪ https://qiita.com/nyamage/items/04f348a868475cef 0c77 ▪ https://speakerdeck.com/yuukit/linux-network- performance-improvement-at-hatena 12

Slide 13

Slide 13 text

解決策 ▪ シングルスレッド性能を上げる ▪ 小数コアマルチサーバー構成への変更 13

Slide 14

Slide 14 text

監視運用の視点から ▪ 高トラフィック環境では、データ処理では無くパケット処理の ためにCPUの1コアが専有される – 割り込み処理の特性 – 処理するデータが無いので他のコアは暇 ▪ 問題解決には対応したNICやOSカーネルのチューニングが必要 – バニラな環境だと発生しやすい ▪ ただのCPU使用率だと見落とす(コア毎の値が必要) – 1コアのみ専有は総CPU使用率としては低く出る – シングルコア限界を見つける必要がある 14

Slide 15

Slide 15 text

N+1問題 発生原因と気付きづらさ 15

Slide 16

Slide 16 text

N+1問題 ▪ フレームワークがSQLを組み立ててくれる(プログラマがSQL を意識しない)言語で発生しやすい ▪ 同じSQL問合せを処理をデータ件数分実行してしまう。 ▪ アプリケーションパフォーマンス劣化のよくある原因 ▪ https://qiita.com/massaaaaan/items/4eb770f20e636f 7a1361 16

Slide 17

Slide 17 text

N+1問題 ▪ インフラエンジニアやDBAは気付きにくい – SQLを意識して書く、自分でJOINする ▪ プログラマも気付きにくい – コードにエラーも無く、処理結果も合っている – フレームワークの出力するSQLが非効率 – DB応答が遅いのでインフラ(DB)の問題だと思い込む 17

Slide 18

Slide 18 text

N+1問題の発見 APM(アプリケーションパ フォーマンスモニタリン グ) 1つの処理の中で同じSQL を何回発行したのかを可視 化 18

Slide 19

Slide 19 text

解決策 ▪ APMによってN+1問題が発生していることを確認 ▪ preload やeager_loadなどSQLの結果をキャッシュしておく フレームワーク処理を利用する。 19

Slide 20

Slide 20 text

監視運用の視点から ▪ 原因はアプリケーションコード ▪ 事象としてはDBが遅いのでインフラ起因のように見える ▪ インフラ監視だけだと気づけない ▪ APMで実際の処理を可視化して原因コードを特定 ▪ アプリケーションに改善を依頼 20

Slide 21

Slide 21 text

コンピュータサイエンス ▪ ほとんどの事象には原因がある。 – おまじない、オカルトではない ▪ レジスタ、キャッシュ、割り込み処理 ▪ 計算量概念、計算コスト概念(DeleteとDrop) ▪ コンピュータサイエンスを理解する事で監視ツールの値が読め るようになる ▪ 監視ツールの値を読むことで概念ではなくコンピュータサイエ ンスの実験として実際に観測できる 21

Slide 22

Slide 22 text

参考文献 ▪ 入門 計算機概論 – https://www.amazon.co.jp/dp/427412956X ▪ https://ascii.jp/elem/000/001/691/1691592/ ▪ https://qiita.com/nyamage/items/04f348a868475cef 0c77 ▪ https://speakerdeck.com/yuukit/linux-network- performance-improvement-at-hatena ▪ https://qiita.com/massaaaaan/items/4eb770f20e636f 7a1361 22