Slide 1

Slide 1 text

Network Approaches to the Reconstruction of Old Chinese Phonology Johann-Mattis List Department of Linguistic and Cultural Evolution Max Planck Institute for the Science of Human History Jena 2017/03/07 1 / 42

Slide 2

Slide 2 text

Introduction Introduction 2 / 42

Slide 3

Slide 3 text

Introduction Rhyming in General Rhyming in General Lose yourself in the music the moment you own it you better never let it go you only get one shot do not miss your chance to blow this opportunity comes once in a lifetime… (Eminem, “Lose yourself”, 2002) 3 / 42

Slide 4

Slide 4 text

Introduction Rhyming in General Rhyming in General Lose yourself in the music the moment you own it you better never let it go you only get one shot do not miss your chance to blow this opportunity comes once in a lifetime… (Eminem, “Lose yourself”, 2002) 3 / 42

Slide 5

Slide 5 text

Introduction Rhyming in General Rhyming in General Lose yourself in the music [-ɪk] ? [ɔi] the moment you own it [-ɪt] ? [ai] you better never let it go you only get one shot do not miss your chance to blow this opportunity comes once in a lifetime… (Eminem, “Lose yourself”, 2002) 3 / 42

Slide 6

Slide 6 text

Introduction Rhyming in General Rhyming in General music [-ɪk] own it [-ɪt] But Germans would rhyme employ and deny! Mai [-ɔi] neu [-ai] 3 / 42

Slide 7

Slide 7 text

Introduction Rhyming as Evidence Rhyming as Evidence 燕 燕 于 飛, 下 上 其 音。 The swallows go flying, falling and rising are their voices; yān yān yú fēi xià shàng qí yīn 之 子 于 歸, 遠 送 于 南。 This young lady goes to her new home, far I accompany her to the south. zhī zǐ yú guī, yuǎn sòng yú nán 瞻 望 弗 及, 實 勞 我 心。 I gaze after her, can no longer see her, truly it grieves my heart. zhān wàng fú jí, shí láo wǒ xīn 4 / 42

Slide 8

Slide 8 text

Introduction Rhyming as Evidence Rhyming as Evidence 燕 燕 于 飛, 下 上 其 音。 The swallows go flying, falling and rising are their voices; yān yān yú fēi xià shàng qí yīn 之 子 于 歸, 遠 送 于 南。 This young lady goes to her new home, far I accompany her to the south. zhī zǐ yú guī, yuǎn sòng yú nán 瞻 望 弗 及, 實 勞 我 心。 I gaze after her, can no longer see her, truly it grieves my heart. zhān wàng fú jí, shí láo wǒ xīn 4 / 42

Slide 9

Slide 9 text

Introduction Rhyming as Evidence Rhyming as Evidence 燕 燕 于 飛, 下 上 其 音。 yān yān yú *pər xià shàng qí *qrəm 之 子 于 歸, 遠 送 于 南。 zhī zǐ yú *kʷəj, yuǎn sòng yú *nˤəm 瞻 望 弗 及, 實 勞 我 心。 zhān wàng fú jí, shí láo wǒ *səm 4 / 42

Slide 10

Slide 10 text

Introduction Rhyming as Evidence Rhymes as Evidence Chinese Text RW MCH Gù Yánwǔ Wáng (1980) Baxter (1992) OCBS-R 殷其靁 léi 靁 *lwoj 靁 A, 之部 靁 - 靁 - *-uj 在南山之陽 yáng 陽 *yang 陽 B, 陽部 陽 A, jiang, 陽部 陽 A, *ljang *-aŋ 何斯違斯 sī 斯 *sje 斯 A, 之部 斯 - 斯 - *-e 莫敢或遑 huáng 遑 *hwang 遑 B, 陽部 遑 A, huang, 陽部 遑 A, *wang *-aŋ 振振君子 zǐ 子 *tsiX 子 A, 之部 子 B, tziə, 之部 子 - *-əʔ 歸哉歸哉 zāi 哉 *tsoj 哉 A, 之部 哉 B, tzə, 之部 哉 - *-ə Comparing differences in rhyme identification for Ode 19.1《周南·殷其雷》 5 / 42

Slide 11

Slide 11 text

Introduction Rhyming as Evidence Rhymes as Evidence We have great difficulty to judge rhyme evidence, specifically, for unattested, reconstructed languages, as we cannot directly query the speakers. Given that poetry in general is influenced by multiple factors, in- cluding the language system, the structure of the soci- ety, and human cognition in general, it is difficult for us to disentangle which factors we are dealing with under which situations. 6 / 42

Slide 12

Slide 12 text

Introduction Old Chinese Phonology Old Chinese Phonology long tradition of linguistic reconstruction in China (starting with Chén Dì 陳第, 1541 – 1606), 7 / 42

Slide 13

Slide 13 text

Introduction Old Chinese Phonology Old Chinese Phonology long tradition of linguistic reconstruction in China (starting with Chén Dì 陳第, 1541 – 1606), breakthrough in the early 20th century with Karlgren’s reconstructions and impressive work by Wáng Lí 王力 (1980) and Li Fang-kuei 李方桂 (1971), 7 / 42

Slide 14

Slide 14 text

Introduction Old Chinese Phonology Old Chinese Phonology long tradition of linguistic reconstruction in China (starting with Chén Dì 陳第, 1541 – 1606), breakthrough in the early 20th century with Karlgren’s reconstructions and impressive work by Wáng Lí 王力 (1980) and Li Fang-kuei 李方桂 (1971), since then more and more improved concrete reconstructions of Old Chinese phonology, 7 / 42

Slide 15

Slide 15 text

Introduction Old Chinese Phonology Old Chinese Phonology long tradition of linguistic reconstruction in China (starting with Chén Dì 陳第, 1541 – 1606), breakthrough in the early 20th century with Karlgren’s reconstructions and impressive work by Wáng Lí 王力 (1980) and Li Fang-kuei 李方桂 (1971), since then more and more improved concrete reconstructions of Old Chinese phonology, another breakthrough in the 1980s, when Baxter (1992), Starostin (1989), and Zhèngzhāng Shàngfāng (see Zhèngzhāng 2003) presented reconstructions in which they independently proposed several similar features (notably six vowels and more rhymes than proposed in the classical analysis) 7 / 42

Slide 16

Slide 16 text

Introduction Old Chinese Phonology Old Chinese Phonology As a general problem, Old Chinese phonology, al- though representing a highly data-driven discipline, has so far paid little attention to the problem of making lin- guistic data transparently available and comparable. Thus, there exist many different reconstructions for Old Chinese, as well as many different rhyme annotations of the Book of Odes (Shījīng 詩經), but they have never been compared on a large scale. If disciplines rely on multiple different types of evidence, it is crucial that this evidence is handled in a comparable and principled way. 8 / 42

Slide 17

Slide 17 text

Networks Networks 9 / 42

Slide 18

Slide 18 text

Networks Networks in General Networks in General 10 / 42

Slide 19

Slide 19 text

Networks Networks in General Networks in General NODE (VERTEX) represents an object 10 / 42

Slide 20

Slide 20 text

Networks Networks in General Networks in General NODE (VERTEX) represents an object EDGE (LINK) represents a relation between objects 10 / 42

Slide 21

Slide 21 text

Networks Networks in General Networks in General can be tagged or labelled EDGE (LINK) represents a relation between objects 10 / 42

Slide 22

Slide 22 text

Networks Networks in General Networks in General can be tagged or labelled can be labelled and weighted 10 / 42

Slide 23

Slide 23 text

Networks Network Examples Network Examples Many structures in daily life and science can be modeled as networks: social networks: nodes are persons, edges are relations between persons (e.g., friendship on FaceBook, etc.), 11 / 42

Slide 24

Slide 24 text

Networks Network Examples Network Examples Many structures in daily life and science can be modeled as networks: social networks: nodes are persons, edges are relations between persons (e.g., friendship on FaceBook, etc.), phylogenetic networks: nodes are languages or dialect varieties, edges represent genetic closeness, 11 / 42

Slide 25

Slide 25 text

Networks Network Examples Network Examples Many structures in daily life and science can be modeled as networks: social networks: nodes are persons, edges are relations between persons (e.g., friendship on FaceBook, etc.), phylogenetic networks: nodes are languages or dialect varieties, edges represent genetic closeness, network of sound change patterns: nodes are sounds, directed edges represent likelihood of sound change during language evolution, 11 / 42

Slide 26

Slide 26 text

Networks Network Examples Network Examples Many structures in daily life and science can be modeled as networks: social networks: nodes are persons, edges are relations between persons (e.g., friendship on FaceBook, etc.), phylogenetic networks: nodes are languages or dialect varieties, edges represent genetic closeness, network of sound change patterns: nodes are sounds, directed edges represent likelihood of sound change during language evolution, ... 11 / 42

Slide 27

Slide 27 text

Networks Network Approaches Network Approaches With help of quantitative approaches, existing networks can be quickly analyzed and we can infer interesting things about their general structure or specific characteristics. The litera- ture on network approaches is abundant, and often it is dif- ficult for scientists to find the right way to tackle their prob- lems. For this reason it is useful to work in an interdisci- plinary and to discuss problems and questions of data han- dling and analysis with network specialists. 12 / 42

Slide 28

Slide 28 text

Networks Network Approaches Network Approaches 13 / 42

Slide 29

Slide 29 text

Networks Network Approaches Network Approaches 13 / 42

Slide 30

Slide 30 text

Networks Network Approaches Network Approaches 13 / 42

Slide 31

Slide 31 text

Networks Network Approaches Network Approaches 13 / 42

Slide 32

Slide 32 text

Networks Network Approaches Network Approaches 13 / 42

Slide 33

Slide 33 text

Networks Network Approaches Network Approaches Methods for community detection are a specific type of par- titioning algorithm. They allow us to partition (cluster) the nodes of a network into different parts. Community detec- tion algorithms are very useful to detect natural groupings in networks. 14 / 42

Slide 34

Slide 34 text

Rhymes and Networks Rhymes and Networks 15 / 42

Slide 35

Slide 35 text

Rhymes and Networks Modeling Modeling 16 / 42

Slide 36

Slide 36 text

Rhymes and Networks Modeling Modeling 16 / 42

Slide 37

Slide 37 text

Rhymes and Networks Modeling Modeling 16 / 42

Slide 38

Slide 38 text

Rhymes and Networks Modeling Modeling 16 / 42

Slide 39

Slide 39 text

Rhymes and Networks Modeling Modeling 16 / 42

Slide 40

Slide 40 text

Rhymes and Networks Modeling Modeling 16 / 42

Slide 41

Slide 41 text

Rhymes and Networks Modeling Modeling 27.3.A 30.2.A 33.3.A 39.1.A 54.4.B 58.1.A 58.6.B 59.1.A 66.1.A 130.1.A 204.4.A 227.2.A sī 丝 qī 淇 móu 谋 qī 淇 qī 淇 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 zhī 之 zhī 之 qī 期 qī 期 méi 梅 méi 梅 yóu 尤 yóu 尤 lái 来 sī 思 lái 来 lái 来 sī 思 sī 思 sī 思 sī 思 sī 思 sī 思 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 móu 谋 zāi 哉 zāi 哉 zāi 哉 zāi 哉 16 / 42

Slide 42

Slide 42 text

Rhymes and Networks Modeling Modeling 訧 蚩 謀 治 絲 淇 之 哉 霾 來 尤 思 16 / 42

Slide 43

Slide 43 text

Rhymes and Networks Modeling Modeling Poem Stanza Verse Sect. Text Rhyme Pattern MCH OCBS 4 1 1 1 南有樛木、 木 - muwk C.mˤok 4 1 1 2 葛藟纍之。 纍 A lwij [r]uj 4 1 2 1 樂只君子、 子 - tsiX tsəʔ 4 1 2 2 福履綏之。 綏 A swij s.nuj 4. 樛木 南有樛木、葛藟纍之。 樂只君子、福履綏之。 南有樛木、葛藟荒之。 樂只君子、福履將之。 南有樛木、葛藟縈之。 樂只君子、福履成之。 17 / 42

Slide 44

Slide 44 text

Rhymes and Networks Modeling Modeling Reconstructing an initial rhyme network for poems which are annotated for their rhyme relations is straightforward. Prob- lematic is the weighting of recurring rhyme connections, the treatment of larger poems, and the handling of specific types of rhyme (rhymes inside the same line, rhymes of bi-syllabic units, etc.). 18 / 42

Slide 45

Slide 45 text

Rhymes and Networks Modeling Modeling if two characters rhyme more than one time throughout a collection of poems, this is of course stronger evidence for their similarity than a spurious rhyming, and it should be handled in the model (→ use weighted networks to represent frequency) if words rhyme in larger stanzas, these stanzas contain more words, and accordingly, more units will rhyme with more other units, which may overweight the closeness between the rhyme words in a longer stanza (→ normalize rhyme connections in each stanza) line-internal rhymes and bi-syllabic rhymes follow at times different rules (especially the former), and ideally their modeling would reflect them as such (question not yet solved in the current application) 19 / 42

Slide 46

Slide 46 text

Rhymes and Networks Modeling Example: The Shījīng Rhyme Browser interactive web-based application displays Shījīng rhymes in digitized form with rhyme annotations following Baxter (1992) and rhyme readings following Baxter and Sagart (2014) and Pān (2000, as provided in the Thesaurus Linguae Sericae). offers a quick and transparent way to inspect Baxter’s rhyme annotations, as well as a quick way to search through the Shījīng for rhyme patterns and brief glosses. URL: http://digling.org/shijing 20 / 42

Slide 47

Slide 47 text

Rhymes and Networks R-Hypothesis R-Hypothesis (List forthcoming) theory first laid out by Starostin (1989: 338-340) who claimed that apparent rhyme connections between *-n and *-j-codas can be explained by reconstructing an additional coda *-r whose normal reflex in Middle Chinese was -n, 21 / 42

Slide 48

Slide 48 text

Rhymes and Networks R-Hypothesis R-Hypothesis (List forthcoming) theory first laid out by Starostin (1989: 338-340) who claimed that apparent rhyme connections between *-n and *-j-codas can be explained by reconstructing an additional coda *-r whose normal reflex in Middle Chinese was -n, further evidence was provided in presumed cognates from Tibetan (Hill 2014), 21 / 42

Slide 49

Slide 49 text

Rhymes and Networks R-Hypothesis R-Hypothesis (List forthcoming) theory first laid out by Starostin (1989: 338-340) who claimed that apparent rhyme connections between *-n and *-j-codas can be explained by reconstructing an additional coda *-r whose normal reflex in Middle Chinese was -n, further evidence was provided in presumed cognates from Tibetan (Hill 2014), Baxter and Sagart (2014) followed this idea in their new reconstruction for Old Chinese, but they did not test the hypothesis on the rhymes 21 / 42

Slide 50

Slide 50 text

Rhymes and Networks R-Hypothesis R-Hypothesis (List forthcoming) theory first laid out by Starostin (1989: 338-340) who claimed that apparent rhyme connections between *-n and *-j-codas can be explained by reconstructing an additional coda *-r whose normal reflex in Middle Chinese was -n, further evidence was provided in presumed cognates from Tibetan (Hill 2014), Baxter and Sagart (2014) followed this idea in their new reconstruction for Old Chinese, but they did not test the hypothesis on the rhymes Can we use the Shījīng network data to provide additional tests for this hypothesis? 21 / 42

Slide 51

Slide 51 text

Rhymes and Networks R-Hypothesis R-Hypothesis: Full Shījīng Network 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 8 2 1 2 1 3 2 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 2 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 2 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 4 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 3 1 1 1 1 1 1 2 2 1 1 1 2 1 1 3 1 2 3 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 2 2 1 2 1 1 3 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 1 3 1 2 1 1 1 1 1 1 1 3 2 1 1 3 2 1 3 2 1 3 1 3 1 1 4 1 2 1 1 1 2 1 1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2 1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 2 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 3 1 6 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 2 1 1 1 2 1 1 4 1 4 1 2 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 3 5 1 1 1 4 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 1 5 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 5 1 1 1 5 1 2 1 2 1 3 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 4 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 2 1 1 1 1 1 1 3 1 1 2 1 4 1 2 1 1 2 3 1 1 2 1 1 1 1 1 1 3 1 1 4 1 1 1 1 1 1 2 2 2 1 1 2 1 1 1 1 1 5 1 1 1 1 1 2 1 1 1 1 1 3 1 1 1 2 1 2 1 1 1 2 1 1 1 1 2 1 3 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 3 2 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 2 1 2 1 2 1 2 5 1 4 1 1 1 1 1 1 2 3 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 7 1 1 2 3 1 2 3 1 1 1 3 1 1 2 1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 2 1 1 1 1 1 3 2 2 1 2 1 1 1 1 1 3 2 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 2 3 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 1 2 1 1 1 4 2 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 5 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 2 2 1 2 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 4 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 3 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 4 5 1 5 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 3 4 3 1 1 1 2 3 2 1 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 4 1 1 1 1 3 1 1 2 9 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 7 1 1 1 1 3 5 4 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 2 1 1 1 1 3 2 3 3 2 1 3 1 1 2 1 2 1 1 3 4 1 1 4 5 1 1 1 2 1 2 1 4 1 1 1 1 2 1 2 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 6 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 5 1 1 1 2 2 1 1 2 2 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 2 4 1 2 1 1 2 2 1 1 1 1 3 1 1 1 1 3 4 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 2 3 1 1 1 1 1 4 1 1 1 1 1 1 1 2 1 1 1 1 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 2 1 1 1 3 1 3 1 14 1 1 1 1 1 1 1 1 1 1 1 1 1 3 5 2 1 2 2 2 1 1 1 1 1 2 4 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1 4 2 2 1 1 1 2 1 3 5 2 1 2 1 1 4 1 2 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 4 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 4 2 2 1 1 1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 2 1 1 1 2 1 1 3 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 4 3 2 1 2 1 5 4 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 皓 悠 巢 秋 受 慅 蕭 懰 遒 球 絿 旒 裒 救 騷 瑤 瀌 麃 消 嗷 桃 ⼑ 遙 膏 夭 號 苗 旐 ⾼ 曜 呶 謠 朝 燎 驕 郊 儦 勞 鑣 旄 叟 揄 慘 蹂 照 忉 周 垢 附 渥 瘁 屬 奏 ⽊ 濁 霂 楰 樹 數 耇 主 厚 ⽃ 醹 枸 匱 檖 棣 穗 利 侮 鍭 鞏 笱 後 瘉 愈 句 后 口 賓 年 甸 粼 溱 翕 姻 敖 親 ⽥ 暴 榛 悼 恌 蒿 零 謔 藐 堅 鷮 教 ⾂ 均 苓 蓁 傚 笑 寮 昭 蕘 巔 盜 鈞 賢 潦 鎬 濱 詢 駰 蘋 藻 嘵 昊 翹 翛 ⽑ 膋 搖 喬 譙 出 薈 萃 悸 退 蔚 訊 遂 荅 述 卒 沒 弗 律 ⼘ 裕 獄 粟 韘 甲 侯 渝 濡 愉 ⽎ 榆 婁 樞 業 涉 及 泣 隰 葉 濕 捷 楫 濈 玉 馵 藚 續 轂 樕 曲 族 取 駒 讀 諏 株 辱 饇 蔞 驅 椓 ⾕ 穀 屋 ⾓ 僕 束 ⿅ ⾜ 祿 獨 藍 襜 宋 詹 對 仲 忡 甚 弘 錦 臨 宮 鳩 考 孚 簋 ⽸ 軌 舅 卯 ⾸ 逑 酒 鴇 翿 合 陶 飽 覺 寶 棗 酬 稻 保 炮 罦 類 內 懟 隧 醉 悖 逵 仇 漕 苕 繡 ⽭ 袍 鵠 罶 憂 軜 休 ⾢ 求 廟 ⾈ 劉 慆 流 髦 滺 怓 遊 浮 囚 滔 優 銶 殽 紹 囂 酋 柔 觩 游 闊 衛 蹶 揭 酢 炙 踖 廓 赫 蓆 作 格 尺 戟 敬 客 昔 宅 舄 碩 庭 傑 柞 駱 諾 貊 弈 繹 圉 莫 斝 瞽 咢 度 錯 臄 席 庶 懌 恪 ⼣ 斁 柏 澤 若 奕 藿 石 濩 綌 搜 伯 落 白 濯 薄 才 溺 鞹 藉 壑 削 雒 活 軷 竭 獲 害 射 歲 外 褐 緒 野 旅 處 舞 所 ⼟ 假 宇 ⿉ ⿏ 下 楚 秬 ⽗ 滸 助 組 居 予 ⾺ 與 股 戶 夏 苦 ⼥ 輔 鱮 扈 虜 湑 俁 虎 顧 怙 阻 浦 魯 武 酤 栩 虞 舉 怒 暇 除 ⾬ 譽 ⿎ 暑 ⽻ 御 罟 哀 悲 違 霏 ⿑ 躋 坻 枚 隮 湄 歸 依 威 幾 迷 資 妻 懠 晞 ⾶ 蓍 屎 毗 郿 罪 飢 回 圍 氐 私 微 遟 塞 ⼫ 維 畿 祗 騑 葵 菲 韡 萋 厎 斐 湝 調 囿 伏 ⾐ 亟 同 贈 來 膍 狸 闋 戾 疚 勩 遲 漣 關 弟 指 薺 師 頎 姨 茨 穋 牧 裘 矣 婦 鮪 惠 時 ⿔ 瘵 飴 箕 梅 謀 哉 梓 逆 詩 泄 ⺟ 伾 蠆 邁 騏 竿 尤 駓 帶 期 丘 思 愒 儺 淇 厲 其 佩 ⽜ 霾 塒 萊 絲 姬 媒 蚩 茷 鼒 俅 滅 珌 疾 夷 鴟 漢 臺 基 噦 訧 憩 ⼤ 治 敗 之 有 裏 在 爵 圃 柘 蘀 稼 固 夜 惡 路 洳 瞿 故 訏 葭 補 豫 呱 去 貉 豝 呼 怯 淑 椐 穫 露 芋 茹 愬 據 寡 歗 袪 修 穧 績 知 祇 鵙 謫 適 斯 剔 益 辟 易 提 刺 狄 解 雌 篪 枝 攜 伎 ⽀ 圭 觿 帝 髢 揥 籥 翟 皙 的 雪 秣 艾 晣 惙 說 拜 閱 左 腓 ⼀ 七 吉 祁 蕨 騤 日 淒 棲 節 室 桋 結 麋 階 ⾎ 紑 黎 薇 喈 談 巖 嚴 斬 監 惔 濫 ⿓ 勇 卬 唐 姜 竦 動 尰 松 充 童 狼 稂 旁 牂 瞻 遑 怲 腸 杭 翔 梗 魴 藏 觥 璋 向 往 競 鄉 響 綱 珩 貺 瑲 抗 潀 畜 腹 復 嚏 寐 崇 從 濛 恫 東 蝀 攻 龐 誦 邦 豵 蒙 訩 穰 粻 空 公 訌 恭 亨 皇 傭 兵 尚 亡 泳 豐 毒 鞫 功 曀 菽 迪 戚 覆 蹙 季 奧 蓫 掌 薁 彊 詳 牆 狂 漿 讓 罔 鏘 兄 瀼 簧 望 相 上 傷 蒼 煌 筐 良 仰 襄 ⻑ 爽 盟 蝱 桑 喪 章 庚 商 京 傍 英 陽 湯 洸 祥 楊 荒 彭 臧 芒 堂 羌 剛 房 鍚 頏 豈 懷 體 罍 死 綏 靁 頹 總 僮 厖 縫 邛 共 容 庸 雙 衝 訟 ⽤ 葑 墉 雝 葦 禰 泲 ⼲ 爾 泥 藟 廛 貆 隼 沖 蓬 ⽕ 重 陰 穉 濃 顒 ⼯ 逢 廱 鍾 鏞 樅 凶 饔 聰 罿 履 樊 檀 餐 雷 ⾔ 澗 追 纍 虺 梁 ⾹ 涼 ⾏ 光 ⽅ 粱 雱 鏜 箱 防 慶 嘗 囊 康 張 享 衡 疆 倉 床 王 明 裳 ⿈ 將 揚 昌 岡 忘 痒 螗 祊 饗 場 蹌 斨 鶬 喤 洋 霜 ⽺ 卿 伉 常 央 羹 糧 僩 咺 選 壎 孌 爛 鴈 霰 粲 晏 貫 泮 簡 綣 岸 宴 旦 亂 怨 漙 願 兮 婉 彥 蕑 悁 卷 緡 孫 熯 顏 媛 展 袢 敦 寬 諼 萎 摧 隤 壞 轉 鍛 羨 ⾒ 援 館 反 焉 遺 畏 旃 ⼔ 砥 推 ⽮ 視 嵬 崔 涕 ⼭ 濟 唯 遷 偕 ⽔ 園 幡 近 菅 尾 邇 燬 僊 旨 醴 皆 痯 墠 愆 衍 幝 癉 板 踐 亶 管 阪 閟 禮 虔 妣 秭 丸 梴 連 諫 然 遠 兕 鱧 熏 芬 艱 乾 欣 亹 娑 蘭 珈 阿 渙 荼 可 河 詈 佗 ⿇ 砠 婆 那 難 痡 翰 差 吁 瘏 恤 肩 湛 毖 熱 繁 單 巘 間 閑 安 儇 閒 泉 殘 嘆 軒 密 番 窒 藩 ⽳ 垤 ⻄ 慄 耋 原 宣 歎 憲 ⾄ 蕃 還 川 過 掎 杝 焚 薖 遯 訛 池 多 錡 紽 聞 吪 磨 鯊 昆 峨 沱 磋 猗 波 他 蘿 歌 ⽪ 蛇 莪 破 馳 嗟 沙 羅 駕 縭 罹 瘥 羆 嘉 為 陂 議 犧 荷 它 儀 禍 娛 闍 宜 何 加 藘 施 ⽡ 靡 且 華 羖 虛 禦 圖 ⽛ 岵 杜 夫 吐 踽 樗 菹 廬 紵 ⽠ 苴 帑 徒 君 蓼 趙 餘 鶉 鳥 渠 輿 奔 少 摽 ⼩ 璊 啍 悄 家 罝 胥離 冔 塗 屠 乎 壺 鋪 旟 魚 舒 琚 書 紓 麌 午 蒲 都 辜 幠 黼 蘇 車 釜 椅 僚 烏 素 狐 盱 著 漘 邪 皎 舍 糾 徂 飧 祛 輪 騢 淪 囷 歆 三 深 今 騰 朋 洒 繩 浼 恆 綅 肱 升 崩 雄 憎 蒸 登 勝 夢 兢 陵 承 薨 懲 乘 男 ⼸ 增 雰 殄 縢 膺 陾馮 冰 掤 譖 琴 貧 云 殷 煁 門 林 芩 心 琛 ⾵ 南 ⾦ 忍 黮 隕 ⾳ 欽 僭 鬵 衿 興 雲 鰥 慇 痻 ⾠ 存 員 巾 肅 穆 駽 燕 郵 僛 盼 倩 局 蜴 蹐 匊 脊 篤 沐 綠 幽 膠 愚 瀟 輈 瘳 姝 躕 收 逅 犀 趨 隅 惟 蠐 芻 脂 藹 翽 葽 蜩 晨 煇 犉 萏 群 苑 錞 旂 煒 佽 柴 眉 塵 美 疧 荑 襭 袺 聊 條 翳 覯 甓 漏 惕 卑 咮 賀 佐 餱 ⽐ 媾 ⾖ 巷 丰 送 孺 飫 具 冠 欒 輯 冾 鋂 偲 栵 枕 儼 控 菡 簀 璧 敢 菼 瑕 膚 曹 匏 燼 頻 翩 泯 匹 抑 秩 怭 紕 四 吠 脫 鮮 瀰 拂 拔 喙 忽 茀 駾 兌 仡 肆 芹 替 引 盡 弔 嘌 胡 檻 錫 泚 帨 畀 牢 飄 終 地 融 裼 慱 包 橐 揖 鷊 慍 閣 誘 振 詵 吹 和 渭 妹 養 景 獻 厄 燔 幭 蟄 捋 祋 芾 俄 傞 冬 窮 汕 完 兩 蕩 簟 寢 召 倒 墐 玷 諗 駸 漂 要 涖 率 椒 先 晢 肺 耽 葚 鬈 環 貶 衎 槱 趣 春 麇 罕 慢 幪 設 勤 閔 蠻 徹 逸 恩 唪 侈 哆 弁 丱 蚤 ⾲ 柳 荍 餤 ⽢ 耘 畛 僾 逮 掇 永 蹈 涵 讒 胤 廣 壼 告 棄 務 鞠 育 賊 織 蜮 淠 夙 嘒 螣 戎 躬 軸 嶷 匐 忒 慝 域 極 背 克 力 ⾰ 直 輻 ⾊ 葍 侑 彧 字 ⿊ 肄 漆 瓞 挃 即 瑟 栗 櫛 垣 俶 陸 祝 六 飲 蠋 降 宿 几 濔 姊 焞 螽 燠 蟲 驂 宗 中 塈 負秠 使 耜 ⽿ ⽌ 晦 能 悔 以 忌 久 鯉 備 德 戒 式 意 ⾷ 億 翼 膴 喜 已 理 友 畝 事 敏 祉 緎 暱 潰 飾 熾 載 ⿆ ⼷ 貽 棘 國 異 福 息 北 富 馘 服 側 稷 則 特 寺 恃 汜 痗 祀 薿 ⼊ 誨 耔 試 起 屆 ⼜ 穡 飭 識 急 襋 祺 駟 奭 得 茂 朽 謂 愛 溉 鼛 莘 售 讎 昴 綯 妯 天 茅 裯 猶 芑 ⿒ ⼦ 涘 俟 杞 茲 海 舊 沚 否 宰 殆 玖 屺 諶 似 右 始 李 紀 饎 采 ⾥ 怠 位 ⼠ 洧 倍 趾 恥 史 仕 我 髮 租 撮 噎 奪 嘽 實 据 平 寧 清 贏 甥 靈 名 沼 星 楨 賦 逝 孼 舝 ⾆ 世 瀖 桀 越 烈 偈 冥 闥 ⽉ 達 楹 怛 況 瑩 曷 闕 櫱 鉞 旆 穟 伐 截 朅 發 渴 括 撥 ⻘ 翯 佸 葛 茇 熲 正 禋 禎 營 令 刑 傾 城 丁 甫 藇 嘏 噳 羜 許 祜 聘 成 涇 定 姓 政 馨 酲 爭 騁 領 苹 霆 菁 睘 炤 笙 躍 驚 盈 ⽣ 屏 征 聲 沮 語 渚 五 盬 祖 寫 脯 者 筥 稌 堵 旌 牲 聽 鳴 經 程 縈 究 皁 莠 冒 抽 櫜 擣 茆 ⼿ 埽 ⾩ 狩 壽 栲 醜 道 ⽼ 苞 集 咎 洲 杻 ⽞ 仁 淵 闐 ⼈ 矜 填 鳶 旬 申 ⾝ ⺠ 神 臻 新 褎 好 臭 報 魗 禱 戊 訓 罩 樂 較 鄰 嚶 電 顛 問 蹻 虐 順 造 秀 孝 草 牡 耄 熇 藥 鑿 駮 到 芼 綽 襮 櫟 沃 命 薪 陳 千 洵 信 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 5 1 1 1 1 1 1 1 2 2 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 3 1 2 1 2 1 2 3 2 1 1 1 2 3 2 1 1 1 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 2 1 3 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 5 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 2 3 2 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 2 3 3 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1 2 1 1 3 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 2 2 1 1 3 1 1 2 1 1 1 1 2 3 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 3 2 3 2 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 2 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 2 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 2 1 2 1 1 1 1 2 5 3 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 3 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 4 5 3 1 1 1 2 1 2 1 7 2 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 9 1 2 1 1 2 1 1 4 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 3 1 2 1 1 1 1 1 2 2 4 2 2 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 3 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 3 3 1 3 1 1 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 2 1 2 2 1 1 2 1 2 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 4 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 1 1 1 1 2 1 1 1 4 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 4 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 3 8 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 4 2 1 1 1 1 1 1 1 2 1 1 1 1 1 3 1 1 1 5 1 2 3 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 5 1 1 1 1 1 2 1 2 2 2 1 1 2 1 2 1 1 2 1 2 1 4 1 1 1 3 1 1 1 1 1 1 2 1 1 1 1 4 1 1 1 1 2 3 5 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 5 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 4 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 2 1 1 2 2 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 14 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 4 4 1 1 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 4 2 5 2 2 1 1 4 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 6 1 2 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 4 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 5 1 1 1 1 3 2 1 1 1 2 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 3 2 1 1 1 1 5 1 2 1 1 1 1 2 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 14 1 2 1 1 2 1 1 1 1 1 3 1 1 2 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 3 1 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 4 2 1 3 1 1 2 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 2 1 2 1 1 1 3 2 1 3 1 2 1 2 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 2 14 1 3 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 4 1 2 2 3 3 9 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 3 2 1 1 4 1 1 1 1 1 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 2 1 4 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 2 1 1 1 2 1 宴 巢 救 倉 籥 蚩 悔 恌 退 凶 卬 盱 衛 夷 霜 楚 填 陰 鎬 狩 ⽛ ⼸ 冥 貫 寺 羹 秀 訌 利 炮 沮 虜 茹 服 犧 諾 甚 甥 夭 兮 域 慆 摧 膍 餐 螣 秋 禦 憲 晦 滔 帝 鼒 暇 祺 叟 ⾶ 優 調 艱 畜 極 熱 罹 展 俶 殽 蕑 闐 丸 歆 竭 魚 魯 炤 華 紵 喬 雌 鵙 向 恤 媛 ⼯ 岡 相 基 琴 負 畿 淑 公 飴 兄 ⾠ 扈 ⿉ 乾 蹌 銶 申 喜 忍 京 ⼩ 戒 丘 愆 秠 縫 冔 塞 ⾒ 櫟 斬 殷 姬 軷 矣 宰 狐 擣 晣 ⼤ 屏 ⿎ 征 羜 慇 茂 作 憎 賦 雄 反 襋 閟 潀 織 苓 騰 城 漕 儺 顒 慶 膴 渚 姊 羆 好 飲 簋 釜 綌 所 舒 伾 上 圭 樗 禰 滸 鑣 漣 聞 肱 聲 葵 嘽 畝 倍 愬 類 側 原 忌 劉 鍛 ⿓ 復 流 竿 讎 稷 鉞 篪 輪 檀 泲 墠 霰 述 袪 爵 涘 秬 葑 剔 罍 遂 宜 懟 赫 鼛 遠 茆 加 狼 紹 萋 濛 伐 魗 達 陳 指 洋 腓 故 丁 忡 使 綣 騢 怠 零 訩 鰥 ⿒ 鱮 川 監 濱 路 ⼲ 騁 揥 冰 臭 蔚 增 祊 杞 信 樂 鋪 咺 洒 粼 我 掌 苕 岸 草 柞 宣 ⺟ 成 階 厖 旒 邪 儇 殆 尚 少 邛 ⾐ 僊 靁 ⾆ 柔 ⽿ 傚 聰 盬 假 考 戟 恥 萎 竦 仇 裘 纍 拜 譽旆 紓 彭 寫尺 敖 彥 實 虐 資 浦 歎 謀 ⾦ 渙 蹂 過 椅 頏淒 蠋 壽 姻 箕 姓翕 瓞 圖 糾 旁⾵奭 蘇 寬 崇 雷 久闥 旟 酒 簡 松 錯 斝 害 怯 偈 背 薇 陂 舊 張粻 東 輿 卷 孌 碩罦 ⼜ 斁 藥 殘 砥 克 麃 廛 藇 功 越 懷 洵 冒 喤 滺 蛇 罝 鞫 房 怒 今 訏 外 磨 熏 邇 塒 嘆 願璊 暑 搜 煁素 罩 親 租 ⽞ 蕭 磋 豈 韡 曷 躋 珈 獲 德 梁 始 傑 崩 綽 ⽌ 趾 藩 蹻 貺 菹 英 禋 難 蒿 朽 落 臺 寮 龐 綏 力 巖堅 備道 傾 瑤 呼 詩 僮 蓬 季 昌 舞 髮 禎 痻 姨 湄 霏 休 安 疆 漢 牆 鞹 咎 簧 隧 寶 瞻 綯 衍 ⾳ 翯 亡 稂 沱 玖 雙 燎 恭 妣 焞 輔 唯 恪 家 近 榛 沙 紽 肩 承 昭 賓 右 ⾺ 砠 旅 邦 爾 猗 浼 鞠 酬 組 奧 予 尤 嗟 ⾰ 馳 幝 騏 ⽕ 匱 怙 居 意 夫 已清 活稼 鏘 ⿊ 康 藟 遊 唐 囂 蒼 ⻘ 車 仁 ⼀ 瘁 膺 讓⽣ 鍚 ⾊ 武 俅 李 嘒 午 摽 績 薿 晞 鴈 麋 囿 杜 鏞 宮 楹 鳩 違 醜 婦 悼 貉 祗 笑 牂 飭 懠 漘 筥 婆 梅 葍 爛 酤 僭 ⾎ ⾬ 遺 珩 嵬 詳 澤 位 友 夙 撥 掎 名 南 伯 升 辟 孚 櫱 消 贏 問 哉 亹 顛 羌 均 翟 陾 嚏 澗 賊 饗 遒 滅 良 伏 集 ⽥ 堂 鳴 藐 ⿔ 蓆 桑 內 ⼊ 栗 虔 矜 去 狂 堵 儀 ⽗ 平 與 湛 明 妯 出 泮 黮 侑 圃 ⽉ 杭 蕨 教 苹 在 櫛 駰 遷 薪 据 祉 騷 呱 搖 菽 慝 報 依 ⼣ 祖 鷮 鴇 痯 瑲 翿 嚴 穉 微 穫 莘 闕 年 敬 告 ⿆ 毒 著 腹 昔 蘀 ⽤ 濟 總 格 虞 露 佸 謫 ⼫ 盈 到 騤 來 膏 ⾄ 駓 亶 ⽺ 旃 櫜 舉 衿 綅 瘵 興 曀 庶 芩 鶬 戎 娑 悠 仕 溺 解 脯 降 鏜 陽 屎 閱 其 巘 懌 傭 杻 還 桀 媒 梗 湯 旨 度 ⽪ 熇 秭 臻 萊 蟲 鱧 伎 維 芼 急 蕃 翼 鑿 俁 溉 羅 攜 洳 濫 怨 卯 書 往 鄰 挃 庭 粱 固 主 順 莠 語 娛 理 獄 駕 蘿 棣 椐 夜 羨 甸 榆 蜮 能 薨 哀 朋 ⼥ 瀌 璋 沼 囊 痡 試 談 穰 ⻑ 逢 號 闋 歲 蓍 慘 饎 沖 隮 舅 汜 踽 鮪 貆 億 暱 姜 毖 瞽 飾 褎 鬵 命 ⾢ 酲 峨 葛 修 ⿏ 揭 茨 翔 兢 罶 爽 為 阿 史 歌 涼 祁 垤 淠 ⼦ 罿 郿 ⽜ 訧 深 較 勝 舄 千 蒙 喪 紀 秣 有 錦 貽 易 除 抗 呶 繹 似 肄 ⿑ 敗 怛 歸 崔 霆 煌 ⽊ 屬 胥 梓 北 躬 後 雲 掤 襮 禮 選 務 騑 馮 枚 議 鳶 富 隕 幡 穡 管 嘗 趙 登 荒 濩 欣 陵 仡 忽 拂 茀 肆 群 苑 錞 ⽭ 蓫 ⾔ 荅 律 煇 晨 旂 犉 荷 猶 諶 囚 皆 贈 饔 中 臨 關 耄 隼 敏 昆 ⾖ 具 飫 室 穧 藏 孺 餱 ⽻ 孫 欽 共 然 佩 ⾷ 亂 席 誦 牧 撮 池 飽 薖 薈 得 圍 死 燠 政 逑 弘 覯 汕 衎 駸 諗 僛 倩 郵 盼 耽 慱 揖 捋 惕 鷊 麇 胤 蟄 漂 要 壼 春 卑 慍 鬈 環 簟 柳 條 蜩 吹 渭 葽 寢 蹈 妹 和 聊 涖 栵 蠻 養 駽 輯 率 燕 翳 完 景 冾 惟 蠐 嘉 盜 荑 犀 煒 脂 將 美 眉 厲 光 噦 遙 壺 餘 下 燬 旬 仲 寧 葦 菅 衡 耜 嗷 世 歗 瀼 琛 采 軒究 孝 氐 巔 柘 從 噎 踐 懲 廱 郊 錡 庚 繁 男 舍 茅 三 業 涉 濈 捷 韘 隰 泣 及 濕 葉 楫 甲 恫 噳 謂 享 多 俟 疚 弟 謠 勩 悖 臄 援 棲 字 吉 直 夏 聽 客 ⽳ 昊 帑 ⼷ ⼑ 翛 壎 豐 刺 婉 逆 石 迷 雰 濃 悲 栩 重 杝 翰 推 林 舝 河 ⺠ 亟 桃 思 裯 柏 適 即 薺 ⼔ 茷 祀 ⾩ 焚 苦 遑 瑩 祥 糧 識 旐 渴 ⽠ 白 可 悸 溱 熲 股 稻 棗 ⼠ 漙 岵 罪 霾 洧 翹 禱 觥 藉 板 ⽡ 軌 蹶 育 鯊 奕 縢 定 裳 乎 屆 奪 焉 茲 厎 保 祛 寡 履 廬 潰 ⾹ 日 陶 發 烏 容 覺 紑 ⼿ 癉 泄 疾 僚 都 泉 ⿈ 驂 蕘 卒 繩 ⽀ 醉 惔 許 領 那 追 黎 覆 傷 存 埽 匐 弈 愒 蓼 嘵 異 期 慅 慄 宅 壑 六 莪 他 私 誨 吁 牲 偕 怓 靡 飢 躍 緒 笙 芬 洸 皙 屺 國 蒲 恃 斐 枝 云 皇 飧 以 浮 闍 苴 漿 貊 窒 縈 戾 荼 淵 懰 式 駱 視 苞 珌 湑 處 心 晏 恆 棘 遯 羖 蝀 兵 痒 絲 戚 悁 亨 皎 惙 涇 忉 淇 忘 濔 ⽸ 求 合 令 吪 茇 體 螗 菲 藘 牡 黼 彊 照 軸 衝 顏 芑 勞 抽 諫 對 營 ⾥ 雪 神 起 ⾼ 稌 烈 佗 妻 尰 憩 詈 助 怲 髢 海 坻 琚 者 淪 訟 藍 酋 訛 破 況昴 穟 虺蠆 貧 的 瘏 雱 葭 密 暴 罟 洲 門 宇 甫 頹 彧 駮 蝱 訓 朅 ⽑ 奔 漆 ⼟ 天 事 幠 經 夢 充 襄 野 苗 旦 廓 旌 望 鍾 莫 渠 襜 諼 熯 髦 閒 閑 麌 說 迪 鈞 裏 寐 番 員 朝 蘋 梴 陸 鴟 皁 敦 棄 刑 狄 圉 几 孼 脫 姝 馨 穗 愚 吠 躕 泳 遲 輻 隤 ⽅ 邁 知 忒 同 隅 逅 趨 芻 丰 巷 控 送 枕 儼 菡 萏 瀟 幽 局 匊 輈 脊 收 秩 怭 匹 抑 頻 翩 泯 燼 瘳 沐 蹐 綠 蜴 膠 篤 泚 瀰 胡 檻 帨 ⽐ 膚 菼 晢 肺 椒 荍 罕 慢 兩 蕩 廣 永 蚤 ⾲ 盡 紕 替 閣 疧 塵 引 瑕 柴 敢 鮮 幪 佐 耘 畛 玷 貶 唪 賀 四 畀 飄 匏 牢 曹 嘌 弔 璧 恩 簀 錫 閔 勤 地 裼 逮 僾 融 終 傞 冬 俄 窮 涵 讒 襭 袺 幭 厄 祋 芾 鋂 穆 葚 先 掇 哆 墐 誘 包 餤 翽 藹 欒 媾 咮 ⽢ 冠 振 詵 槱 獻 趣 燔 弁 丱 偲 侈 肅 甓 倒 召 漏 臧 星 豫 啍 截 箱 鳥 防 益 酢 毗 何 ⾝ 祜 沃 斨 縭 徒 鶉 驚 則 ⻄ 袢 巾 球 觿 連 薄 熾 宗 師 ⾈ ⾸ 揚 阪 涕 惠 雒 吐 新 瘥 逝 痗 狸 顧 蒸 粲 宿 動 虛 炙 喈 ⾂ 爭 鯉 王 垣 床 塗 威 特 曜 結 佽 設 徹 橐 逸 兌 喙 駾 拔 芹 幾 辜 館 ⼈ 藻 ⿇ 左 墉 皓 沚 豝 戊 膋 悄 惡 嚶 廟 戶 施 電 耋 時 童 周 褐 薁 ⽔ 耔 裒 譙 袍 ⼘ 濡 馵 曲 愈 樕 醹 取 瘉 饇 濁 垢 附 笱 駒 耇 藚 穀 ⾓ 鍭 椓 ⿅ 侯 蔞 束 厚 婁 讀 渥 粟 僕 數 辱 ⾕ 愉 ⾜ 屋 鞏 續 樞 侮 族 渝 霂 株 后 ⽎ 樹 轂 裕 驅 枸 獨 ⽃ 諏 奏 楰 口 句 玉 祿 沒 醴 驕 受 宋 斯 君 蓁 樊 治 商 競 栲 萃 響 泥 靈 遟 鵠 卿 桋 湝 乘 福 正 間 芋 瀖 壞 虎 旄 繡 否 之 御 仰 囷 五 詢 闊 譖 兕 絿 ⽼ 單 詹 踖 雝 楨 藿 瞿 罔 游 鄉 魴 園 ⽮ 馘 聘 謔 豵 頎 庸 若 觩 射 央 筐 帶 艾 提 嶷 嘏 瑟 穋 攻 括 綱 祝 徂 螽 濯 ⼭ 芒 尾 削 剛 波 咢 補 菁 阻 儦 勇 睘 畏 訊 愛 蹙 節 緡 才 樅 駟 揄 章 空 檖 伉 轉 它 場 盟 載 弗 逵 腸 據 屠 離 回 ⾏ 常 塈 且 蘭 緎 僩 殄 造 售 程 楊 潦 祇 軜 傍 賢 禍 憂 差 七 息 B A 22 / 42

Slide 52

Slide 52 text

Rhymes and Networks R-Hypothesis R-Hypothesis: Full Shījīng Network 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 4 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 3 1 1 1 1 1 2 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 5 1 2 1 1 1 2 1 1 1 1 1 1 4 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 3 1 3 2 1 1 1 1 1 4 1 2 1 1 2 1 2 3 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 3 1 1 1 1 4 1 3 3 9 7 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 2 1 2 1 1 2 2 1 1 1 4 1 2 1 2 3 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 3 1 1 2 1 1 1 2 5 4 2 2 1 1 52 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 2 2 1 1 1 1 嚴 談 濫 斬 惔 監 相 彊 傷 競 梗 牂 旁 翔 怲 頏 唐 上 往 痒 魴 姜 蒼 腸 詳 瞻 遑 掌 彭 庚 襄 桑 岡 張 忘 芒 螗 英 荒 良 簧 湯 傍 楊 堂 抗 瀼 牆 仰 狼 狂 漿 鏘 兄 陽 稂 伉 臧 爽 長 煌 糧 筐 雱 涼 防 盟 卿 蝱 粻 羹 囊 倉 粱 剛 揚 房 京 箱 商 梁 洋 昌 珩 泳 亡 瑲 貺 兵 樅 鏞 光 慶 嘗 香 亨 享 羊 方 喪 黃 斨 王 鶬 皇 將 常 衡 穰 饗 卬 杭 向 罔 望 讓 藏 觥 璋 鍚 綱 響 洸 鄉 羌 裳 央 鏜 章 祥霜 場 喤 床 康 蹌 行 明 疆 祊 尚 廱 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 3 1 2 2 1 1 1 1 1 1 1 1 2 1 1 4 1 1 2 2 2 1 1 1 2 1 1 1 1 4 2 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 4 1 1 1 1 1 3 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 4 14 3 2 3 1 1 1 2 8 1 1 1 3 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 5 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 2 3 3 1 2 2 1 5 1 1 1 1 2 2 1 1 1 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 5 1 1 1 1 1 1 1 2 2 1 1 1 1 3 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 4 1 1 4 1 3 1 1 2 2 4 3 4 1 4 3 1 1 3 1 1 1 4 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 6 1 3 1 1 1 1 1 1 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 7 1 1 1 1 1 3 4 1 2 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 4 1 1 1 1 1 3 1 3 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 5 1 3 1 4 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 1 4 1 5 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 4 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 2 1 1 3 1 1 3 2 1 2 1 2 4 1 1 1 1 1 1 1 3 1 1 1 2 1 2 1 1 2 1 2 2 2 1 1 2 1 1 2 2 2 2 1 2 3 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 1 3 2 1 3 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 5 1 2 4 1 3 1 1 1 1 1 1 1 3 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 3 1 1 1 1 3 3 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 5 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 3 1 2 1 1 1 2 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 3 1 1 4 1 2 1 2 1 3 1 3 1 2 1 1 1 3 1 1 1 1 4 1 1 1 1 1 1 1 1 1 5 2 1 1 2 1 2 1 1 1 2 1 1 1 2 4 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 5 1 1 1 2 1 2 2 1 1 2 1 1 1 1 1 1 6 1 1 1 1 1 3 1 2 1 1 2 1 1 2 4 1 1 1 1 2 3 1 2 1 1 1 2 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 1 1 1 1 1 2 1 2 2 1 2 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 2 1 2 1 1 1 11 1 1 1 1 1 1 1 1 1 3 1 1 1 2 2 3 2 1 1 1 3 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 3 1 2 5 2 2 1 1 1 3 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 11 1 1 1 1 1 1 1 1 1 1 2 1 1 1 填 民 翕 合 邑 矛 矜 霆 騁 驚 程 領 禋 縈 牲 禎 旌 姓 經 睘 聽 菁 盈 爭 政 生 馨 聲 征 酲 靈 涇 訓 楨 鳶 新 命 旬 神 臻 申 薪 戚 蹙 菽 奧 迪 瑩 夏 股 熲 順 稌 青 溱 玄 甸 親 粼 信 零 洵 姻 令 仁 鳴 苹 定 薁 聘 蓁 人 笙 顛 苓 淵 榛 鄰 均 巔 電 闐 賓 年 身 陳 田 千 軜 濱 堅 詢 臣 駰 賢 鈞 昊 慅 袍 仇 懰 逵 受 蘋 反 諼 遠 寬 焉 澗 然 怨 簡 僩 咺 綣 旦 岸 泮 晏 選 亂 貫 宴 管 愆 板 癉 踐 阪 墠 亶 諫 衍 孌 見 霰 援 羨 鴈 鍛 壎 晣 艱 噦 逝 揭 外 乾 軷 發 傑 朅 撥 褐 泉 奪 軒 髮 撮 殘 雪 拜 蠆 愒 大 泄 憩 旃 菅 邁 敗 單 原 闊 婆 娑 蘭 差 艾 巘 秣 渙 繁 歎 舌 竭 害 孼 世 歲 瀖 活 言 園 瘵 梴 丸 說 虔 閑 樊 闕 曷 茇 桀 況 月 旆 越 穟 烈 達 截 伐 鉞 櫱 閱 厲 帶 安 連 趙 皎 僚 鳥 糾 蓼 佗 那 杝 宣 它 掎 難 蕃 他 密 峨 過 鯊 瓦 多 吪 訛 池 錡 薖 阿 嘉 波 施 羅 沙 麻 犧 嗟 嘆 番 慄 憲 穴 耋 瑟 日 翰 嘽 節 藩 即 漆 歌 摽 莪 悄 少 小 粲 悁 轉 蕑 館 兮 卷 彥 爛 訊 萃 悸 退 蔚 出 遂 荅 婉 顏 漙 願 袢 璊 奔 漘 飧 鶉 君 淪 啍 囷 輪 弗 律 述 卒 沒 悖 類 內 醉 對 隧 懟 匱 檖 瘁 穗 利 洒 展 媛 昆 浼 熏 巾 存 慇 雲 辰 員 痻 舝 闥 茷 偈 佸 葛 括 怛 衛 蹶 渴 痯 芬 云 殷 欣亹 門 貧 幝 熯 聞 川 孫 緡 焚 遯 鰥 殄 隕 忍 雰 克 服 馘 息 麥 革 棘 福 識 背 哀 潰 悲 厎 萋 齊 騑 腓 霏 斐 躋 畿 菲 依 飢 遟 圍 妻 祗 幾 違 淒 遲 騤 私 棲 穋 試 熾 襋 穡 異 富 國 急 奭 貽 裘 疚 塈 又 牧 幡 滅 僊 惠 闋 勩 重 雝 壞 萎 纍 鴟 隤 敦 追 七 雷 屆 懷 頹 靁 遺 虺 推 駟 畏 摧 崔 嵬 麋 罍 綏 階 嘒 淠 饔 曀 動 厖 嚏 季 聰 凶 陰 邛 罿 墉 共 寐 衝 容 庸 訟 雙 葑 公 濃 用 棄 沖 勇 充 龍 竦 童 尰 松 總 工 逢 縫 僮 顒 檀 山 餐 遷 干 吉 廛 貆 湄 郿 微 肄 湝 回 尸 歸 飛 桋 蕨 罪 伏 關 囿 威 龐 從 攻 訌 傭 恭 迷 師 蓍 韡 毗 懠 屎 資 葵 茨 噎 還 垣 血 實 同 邦 晞 調 坻 頎 枚 衣 姨 疾 間 漣 肩 惙 閒 儇 豵 濛 蒙 蝀 訩 恫 空 蓬 誦 焞 氐 戾 結 維 膍 一 左 牛 臺 漢 蚩 霾 珌 塒 萊 諶 佩 飴 溉 贈 黎 祁 亟 來 謂 薇 塞 愛 喈 夷 起 鮪 膴 狸 矣 虛 踽 杜 紵 釜 禦 羖 吐 脯 寡 紓 寫 五 秬 怙 渚 盬 栩 湑 與 俁 語 穧 甫 茹 噳 岵 楚 筥 組 浦 緒 阻 據 穫 愬 呱 豫 嘏 訏 黼 藇 虜 補 羜 朋 崩 登 雄 憎 騰 恆 蒸 升 乘 膺 增 綅 掤 男 弓 懲 縢 鬵 承 勝 夢 陾 馮 兢 陵 繩 薨 欽 興 黮 冰 僭 音 衿 金 髢 芩 譖 林 琴 皙 枝 伎 觿 雌 圭 篪 支 攜 知 鵙 謫 斯 祇 提 刺 解 易 適 益 辟 剔 績 心 煁 狄 揥 帝 南 風 琛 今 三 肱 歆 深 恤 熱 痡 至 吁 靡 砠 毖 離 破 陂 荷 馳 紽 猗 縭 椅 磋 蛇 皮 羆 河 栗 櫛 瓞 据 我 租 挃 加 珈 窒 禍 垤 何 瘏 宜 議 蘿 為 罹 瘥 詈 可 儀 沱 磨 歗 駕 湛 修 翟 鼒 俅 紑 室 繹 舍 駱 塗 搜 蘇 弈 書 旟 狐 澤 著 的 烏 爵 素 柞 籥 奕 昔 戟 舄 車 恪 華 闍 薄 落 賦 白 盱 鞹 都 貊 諾 居 夕 斁 懌 藿 訧 格 射 蓆 作 濯 治 柏 客 廓 尺 琚 碩 赫 宅 若 舒 伯 炙 譽 度 錯 酢 且 踖 削 溺 藘 娛 淑 荼 呼 渠 輿 才 餘 雒 芋 貉 椐 祛 怯 柘 稼 帑 幠 壑 藉 鋪 惡夜 牙 徒 露 袪 濩 圃 辜 乎 綌 瞿 魚 邪 家 洳 罝 臄 御 瓜 席 咢 斝 庶 許 虎 助 豝 麌 葭 午 者 處 予 女 羽 黍 假 野 舉 徂 固 除 騢 故 路 蘀 圖 去 酤 下 堵 土 舞 宇 所 祖 馬 祜 冔 輔 菹 廬 暇 旅 蒲 屠 莫 壺 樗 夫 石 顧 沮 虞 胥 怒 苴 扈 滸 父 武 魯 楹 寧 成 清 冥 星 贏 刑 平 腹 嚶 宿 城 畜 復 營 覆 毒 鞫 球 秋 蕭 旒 揄 遒 皓 絿 罶 燠 鴇 怓 首 逑 天 莘 鳩 問 丁 傾 蓫 屏 鵠 優 慆 酋 銶 繡 喬 嘵 翹 搖 翛 呶 譙 苕 瑤 驕 膋 毛 瀌 忉 巢 謠 桃 刀 號 旐 苗 郊 嗷 消 麃 高 遙 膏 朝 勞 鑣 曜 儦 旄 夭 猶 罩 樂 茅 夙 虐 告 綯 綽 耄 駮 秀 褎 藐 好 教 造 較 藥 苞 埽 寶 鷮 罦 牡 抽 孝 潦 軌 保 翿 陶 廟 孚 笑 皁 莠 杻 昭 栲 臭 櫟 茂 襮 到 鑿 芼 沃 朽 寮 傚 暴 盜 敖 蒿 囚 蕘 恌 悼 囂 基 淇 伾 絲 雨 獲 姬 媒 駓 丘 竿 龜 箕 期 梅 其 謀 儺 恥 之 采 有 哉 恃 逆 始 似 殆 躍 詩 尤 騏 翯 思 暑 敬 圉 瞽 苦 鼠 鱮 庭 戶 鼓 罟 否 敏 芑 涘 裏 使 理 梓 海 沼 倍 史 宰 事 負 炤 齒 耔 汜 時 鯉 久 薿 忌 止 耳 玖 耜 李 士 趾 畝 杞 秠 洧 里 友 祉 已 沚 喜 悔 子 位 字 祀 痗 寺 婦 意 戒 載 入 式 怠 右 饎 茲 紀 屺 舊 仕 母 俟 在 以 晦 能 燎 裒 叟 蹂 周 照 慘 騷 紹 觩 流 滔 殽 求 擣 休 酬 游 飽 漕 劉 滺 炮 卯 悠 遊 柔 浮 稻 救 髦 憂 舟 棗 讎 陸 謔 六 祝 妯 熇 蠋 鼛 售 蹻 裯 甥 正 鞠 名 育 昴 俶 茆 禱 手 阜 舅 戊 簋 洲 集 究 醜 老 報 軸 草 道 咎 鎬 冒 缶 考 狩 藻 櫜 壽 酒 覺 魗 宮 躬 臨甚 錦 弘 飾 極 祺 暱 螣 忒 直 特 力 賊 緎 食 嶷 則 葍 色 匐 備 翼 德 侑 輻 億 黑 域 稷 誨 妣 尾 潀 閟 秭 禮 履 偕 忡 驂 飲 蟲 螽 降 宗 中 砥 宋 匕 視 醴 涕 皆 仲 燬 旨 近 矢 邇 鱧 兕 藍 襜 巖 詹 東 功 棣 鍾 薈 弟 隮 火 穉 薺 西 指 濟 葦 爾 體 唯 水 死 崇 泥 豈 豐 務 姊 藟 禰 隼 濔 泲 几 戎 側 慝 彧 得 飭 織 北 弋 蜮 *-əj *-ək *-əʔ *-aʔ *-in *-aŋ 22 / 42

Slide 53

Slide 53 text

Rhymes and Networks R-Hypothesis R-Hypothesis: Community Detection By eyeballing the network alone, we cannot find any conclu- sive proof for any of the finals of Old Chinese. Instead, we need to partition the data, using classical methods for com- munity detection. If these clusters, inferred from the network structure, reflect the distinction of OC *-j and *-n words into three classes, this can be seen as strong evidence for the *-r coda. 23 / 42

Slide 54

Slide 54 text

Rhymes and Networks R-Hypothesis R-Hypothesis: Community Detection community detection with help of Infomap (Rosvall and Bergstrom 2007) algorithm splits the Shījīng network into 345 distinct communities all data can be interactively browsed at http://digling.org/shijing/communities.html 24 / 42

Slide 55

Slide 55 text

Rhymes and Networks R-Hypothesis R-Hypothesis: Power of Community Detection 1 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 5 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 3 1 2 1 1 1 2 1 1 2 3 1 1 2 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 4 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 4 2 3 1 1 1 1 1 1 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 1 5 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 4 2 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 3 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 6 1 2 1 1 1 1 1 1 2 1 9 1 1 1 1 2 4 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 2 1 1 2 1 1 1 1 4 2 1 4 2 1 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 3 1 2 1 4 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 2 1 1 1 1 1 3 1 1 1 1 1 1 2 6 1 1 1 1 1 1 1 2 3 2 1 1 5 1 3 5 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 3 2 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 士 負 趾 事 耳 畝 耜 洧 秠 寺 樂 炤 茂 造 猶 躍 恥 采 騏 翯 倍 里 杞 沼 玖 宰 史 屺 怠 仕右 饎 李 母 媒 姬 駓 伾 絲 訧 治 之 詩 尤 恃 思 丘 期 儺 謀 其 箕 竿 龜 梅 淇 茲 久 哉 有 逆 俟 紀 否 殆 始 涘 似 舊 時 齒 喜 友 已 沚 祉 悔 子 使 荼 芑 海 裏 理 起 又 裘 耔 塈 直 福 革 力 息 棘 背 牛 基 臺 左 蚩 狸 鯉 鮪 萊 佩 諶 膴 飴 矣 霾 塒 穡 國 識 富 服 奭 麥 試 克 租 鼒 俅 瘏 紑 据 至 穋 夷 疚 牧 異 熾 珌 菲 祗 圍 遟 遲 私 畿 違 淒 愛 棲 謂 黎 來 騤 溉 依 弟 躋 幾 飢 厎 妻 隮 腓 斐 霏 哀 萋 喈 騑 悲 齊 潰 室 何 我 漢 垤 窒 贈 亟 祁 薇 塞 櫛 河 瓞 穴 挃 即 漆 耋 瑟 栗 宜 囿 威 伏 桋 蕨 漣 關 葵 迷 懠 肄 師 歸 毗 屎 資 坻 頎 枚 同 姨 衣 邦 湄 回 尸 晞 微 湝 飛 實 垣 還 日 節 翰 血 疾 番 嘽 憲 稷 翼 意 備 侑 德 億 戒 黑 誨 食 域 輻 特 極 色 則 忒 止 位 能 汜 薿 忌 晦 以 敏 在 梓 婦 載 入 痗 祀 式 *-ə *-əʔ 25 / 42

Slide 56

Slide 56 text

Rhymes and Networks R-Hypothesis R-Hypothesis: Power of Community Detection Comparing the -əʔ vs. the -ə-coda, as inferred by the algo- rithm, the inference comes very close to the reconstruction system of Baxter and Sagart (2014): of 74 rhyme words as- signed to -əʔ automatically, 59 also reconstructed as such; of 39 rhyme words automatically assigned to -ə, 30 are re- constructed as such in Baxter and Sagart. 25 / 42

Slide 57

Slide 57 text

Rhymes and Networks R-Hypothesis R-Hypothesis: Testing the *-a[nrj] Coda 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 3 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 5 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 1 1 3 1 1 4 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 嘆 安 閑 難 泉 彥 羨 粲 旦 援 鴈 岸 晏 爛 巘 乾 嘽 繁 漢 蕃 番 宣 歎 蘭 憲 單 軒 原 殘 那 翰 藩 渙 然 諫 板 遠 癉 亶 管 僊 墠 ⾔ 遷 園 連 漣 虔 焉 ⼭ ⼲ 垣 丸 諼 廛 咺 澗 貆 寬 熯 顏 痯 踐 媛 反 衍 愆 阪 罹 ⽪ 河 紽 磨 儀 佗 磋 池 差 婆 ⿇ 訛 娑 離 宜 錡 嘉 他 加 沙 多 儺 靡 左 嗟 犧 波 施 沱 駕 蛇 何 荷 陂 羆 過 歌 禍 詈 薖 馳 我 破 可 吪 它 為 椅 羅 ⽡ 議 A *-an *-aj *-ar *-an / *-ar 26 / 42

Slide 58

Slide 58 text

Rhymes and Networks R-Hypothesis R-Hypothesis: Testing the *-a[nrj] Coda 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 2 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 3 1 2 1 1 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 3 1 1 1 1 2 2 1 1 1 1 1 1 1 1 羆 蛇 紽 ⽪ 癉 遠 諫 渙 阪 板 衍 墠 蘭 訛 池 ⿇ 薖 娑 痯 差 管 婆 嘽 番 歎 難 翰 單 嘆 憲 繁 泉 亶 岸 然 援 反 羨 踐 藩 原 宣 漢 那 蕃 巘 垣 爛 粲 鴈 彥 乾 晏 旦 歌 施 離 過 靡 椅 虔 廛 焉 殘 僊 諼 寬 咺 愆 熯 顏 媛 澗 我 儺 詈 左 禍 可 它 波 馳 河 破 議 加 羅 何 ⽡ 貆 安 漣 遷 ⼲ 園 閑 ⾔ 丸 連 軒 他 ⼭ 錡 吪 沱 磋 荷 佗 駕 儀 陂 嘉 宜 罹 嗟 犧 沙 多 為 磨 B 26 / 42

Slide 59

Slide 59 text

Rhymes and Networks R-Hypothesis R-Hypothesis: Testing the *-a[nrj] Coda 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 安 焉 虔 園 遷 閑 廛 貆 ⾔ 漣 僊 ⼭ ⼲ 殘 軒 連 丸 C 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 安 焉 虔 園 遷 閑 廛 貆 ⾔ 漣 僊 ⼭ ⼲ 殘 軒 連 丸 D 26 / 42

Slide 60

Slide 60 text

Rhymes and Networks R-Hypothesis R-Hypothesis: Testing the *-a[nrj] Coda Thanks to the community analysis on the Shījīng rhyme net- work, we can feed back to Baxter and Sagart’s reconstruc- tion and conform many cases of uncertainty. The structure of the clusters indicates that the r-coda can also be detected in the rhyme networks. More research is needed to include the results of the automatic analysis into the reconstruction of Old Chinese. 26 / 42

Slide 61

Slide 61 text

Rhymes and Networks Vowel Purity Vowel Purity (List et al. forthcoming) Ho (2016) claims that the principle of vowel purity was im- portant in Old Chinese rhyming: poets would try to avoid rhyming words with different consonants, while differences in the codas were more often tolerated. Reconstruction sys- tems which contradict this principle, may therefore be exter- nally criticized as neglecting the principle of vowel purity. On the other hand, we can compare different reconstruction re- garding the degree of purity of their vowels compared to the rhyme data in the Shījīng. 27 / 42

Slide 62

Slide 62 text

Rhymes and Networks Vowel Purity Vowel Purity: Comparative Data Reconstruction System No. Rhymes Density a ɑ æ e ə o ɔ u ʊ ɯ i Karlgren (1957) 1830 0.0031 0.0026 x x x x x x x x x x x Li 李方桂 (1971) 1830 0.0031 0.0026 x x x x Wáng 王力 (1980) 1830 0.0031 0.0026 x x x x x Zhèngzhāng 鄭張尚芳 (2003) 1830 0.0031 0.0030 x x x x x x Starostin (1989) 1358 0.0035 0.0026 x x x x x x Pān 潘悟雲 (2000) 1830 0.0031 0.0026 x x x x x Baxter and Sagart (2014) 1431 0.0038 0.0033 x x x x x x Schuessler (2007) 1224 0.0041 0.0035 x x x x x x 28 / 42

Slide 63

Slide 63 text

Rhymes and Networks Vowel Purity Vowel Purity: Method for Testing Assortativity tests whether nodes sharing connections in a graph are also similar regarding other characteristics (New- man 2003). In social network analyses it can, for exam- ple, be used to test whether observed patterns in a network, like friendship, come along with properties of the individu- als, such as language or gender (ibid.). Assortativity can be measured by calculating the assortativity coefficient of a network in which all nodes have a given attribute. 29 / 42

Slide 64

Slide 64 text

Rhymes and Networks Vowel Purity Vowel Purity: Method for Testing 5 2 1 4 6 3 A B 1 2 4 3 6 5 30 / 42

Slide 65

Slide 65 text

Rhymes and Networks Vowel Purity Vowel Purity: Method for Testing A 1 2 3 4 5 6 B 1 2 3 4 5 6 1 x x 1 x x 2 x x 2 x x 3 x x x 3 x x x x 4 x x x 4 x x x 5 x x 5 x x x 6 x x 6 x x x x 30 / 42

Slide 66

Slide 66 text

Rhymes and Networks Vowel Purity Vowel Purity: Method for Testing A red blue red + blue B red blue red + blue red 6/14 = 0.43 1/14/ = 0.07 7/14 = 0.5 red 6/18 = 0.33 4/18/ = 0.22 10/18 = 0.55 blue 1/14 = 0.07 6/14 = 0.43 7/14 = 0.5 blue 4/18 = 0.33 4/18 = 0.22 8/18 = 0.44 red + blue 7/14 = 0.5 7/14 = 0.5 14/14 = 1.0 red + blue 10/18 = 0.55 8/18 = 0.44 18/18 = 1.0 30 / 42

Slide 67

Slide 67 text

Rhymes and Networks Vowel Purity Vowel Purity: Results of the Tests Reconstruction System Assortativity Randomized Assortativity (Ø) Standard Deviation Sigma Score Rank p- Value Karlgren (1957) 0.5824 -0.0029 0.0091 64 6 < 0.001 Li 李方桂 (1971) 0.8230 -0.0026 0.0149 56 8 < 0.001 Wáng 王力 (1980) 0.7709 -0.0026 0.0127 61 7 < 0.001 Zhèngzhāng 鄭張尚芳 (2003) 0.7435 -0.0021 0.0103 72 3 < 0.001 Starostin (1989) 0.8444 -0.0025 0.0115 74 2 < 0.001 Pān 潘悟雲 (2000) 0.7326 -0.0020 0.0103 71 4 < 0.001 Baxter and Sagart (2014) 0.8765 -0.0025 0.0112 79 1 < 0.001 Schuessler (2007) 0.7244 -0.0026 0.0111 66 5 < 0.001 31 / 42

Slide 68

Slide 68 text

Rhymes and Networks Vowel Purity Vowel Purity: Results of the Tests Reconstruction System 100 # 200 # 300 # 400 # 500 # 600 # 700 # 800 # Karlgren (1954) 7 5 16 3 23 3 32 3 36 6 45 6 52 5 60 5 Li 李方桂 (1971) 7 5 13 8 18 8 26 8 32 8 40 8 45 8 51 8 Wáng 王力 (1980) 7 5 15 7 21 7 30 7 35 7 43 7 49 7 56 7 Zhèngzhāng 鄭張尚芳 (2003) 9 2 16 3 23 3 32 3 40 3 49 3 55 3 64 3 Starostin (1989) 9 2 17 2 25 2 35 2 43 2 51 2 59 2 68 2 Pān 潘悟雲 (2000) 9 2 16 3 23 3 32 3 39 4 48 4 54 4 63 4 Baxter and Sagart (2014) 10 1 18 1 27 1 37 1 46 1 55 1 63 1 72 1 Schuessler (2007) 7 5 16 3 22 6 31 6 38 5 46 5 52 5 60 5 31 / 42

Slide 69

Slide 69 text

Rhymes and Networks Vowel Purity Vowel Purity: Results of the Tests Provided the principle of vowel purity was really dominant during time of the creation of the Shījīng, our results indicate that reconstruction systems with six vowels outperform those with less or more vowels. Given that we do not know to which degree vowel purity was important in Old Chinese rhyming, this does not allow us to prove or disprove any of the recon- struction systems. Further research on rhyming practice and pragmatics are needed. 31 / 42

Slide 70

Slide 70 text

More on Networks More Networks 32 / 42

Slide 71

Slide 71 text

More on Networks Fǎnqiè Networks Fǎnqiè Networks It has long since been known that fǎnqiè 反切 readings can also be analyzed by exploiting their network characteristics (see, e.g., Gěng Zhènshēng 耿振生 2004 on the fǎnqiè xìliánfǎ 反切系聯法). 33 / 42

Slide 72

Slide 72 text

More on Networks Fǎnqiè Networks Fǎnqiè Networks It has long since been known that fǎnqiè 反切 readings can also be analyzed by exploiting their network characteristics (see, e.g., Gěng Zhènshēng 耿振生 2004 on the fǎnqiè xìliánfǎ 反切系聯法). But with modern network approaches, we can handle the data more consistently and transparently. 33 / 42

Slide 73

Slide 73 text

More on Networks Fǎnqiè Networks Fǎnqiè Networks It has long since been known that fǎnqiè 反切 readings can also be analyzed by exploiting their network characteristics (see, e.g., Gěng Zhènshēng 耿振生 2004 on the fǎnqiè xìliánfǎ 反切系聯法). But with modern network approaches, we can handle the data more consistently and transparently. By extracting, for example, all fǎnqiè shàngzì 反切上字 from the Guǎngyùn 廣韻, we can create networks of fǎnqiè connections. 33 / 42

Slide 74

Slide 74 text

More on Networks Fǎnqiè Networks Fǎnqiè Networks It has long since been known that fǎnqiè 反切 readings can also be analyzed by exploiting their network characteristics (see, e.g., Gěng Zhènshēng 耿振生 2004 on the fǎnqiè xìliánfǎ 反切系聯法). But with modern network approaches, we can handle the data more consistently and transparently. By extracting, for example, all fǎnqiè shàngzì 反切上字 from the Guǎngyùn 廣韻, we can create networks of fǎnqiè connections. These networks are ideal for teaching Chinese traditional phonology, but also for comparison if scholars have different opinions. 33 / 42

Slide 75

Slide 75 text

More on Networks Fǎnqiè Networks Fǎnqiè Networks 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 34 / 42

Slide 76

Slide 76 text

More on Networks Fǎnqiè Networks Fǎnqiè Networks 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 苦 牽 口 可 恪 枯 客 謙 佳 各 姑 古 乖 干 兼 格 康 公 詭 空 楷 過 34 / 42

Slide 77

Slide 77 text

More on Networks Fǎnqiè Networks Fǎnqiè Networks 1 1 1 1 1 1 1 2 1 2 1 1 2 1 2 2 1 1 1 1 1 1 1 1 kʰɐk kʰəu˥ kʰɑk kʰu� kʰɑ˥ kʰien� kʰu� kʰiem� ku˥ kɑn� kwɐi� kai� ku� kɑk kiem� kʰuŋ� kĭwe˥ kʰɐi˥ kʰɑŋ� kɐk kuŋ� kuɑ� 34 / 42

Slide 78

Slide 78 text

More on Networks Fǎnqiè Networks Fǎnqiè Networks Fǎnqiè networks are still underexplored, both with respect to traditional scholarship on Chinese historical phonology and with respect to the way they are best handled, and potential differences across Chinese rhyme books or other sources containing fǎnqiè readings from different epochs or authors. However, it seems promising to further exploit and test the approaches, as they may drastically increase the transparency of current approaches. 35 / 42

Slide 79

Slide 79 text

More on Networks Xiéshēng Networks Xiéshēng Networks Since Duàn Yùcái 段玉裁 detected the strong correlation between the phonetic part of xíngshēng 形聲 characters, we know that the Chinese system basically reflects a network structure, since a large part of the characters can be decomposed into subparts which reflect other characters or recur across different characters. 36 / 42

Slide 80

Slide 80 text

More on Networks Xiéshēng Networks Xiéshēng Networks Since Duàn Yùcái 段玉裁 detected the strong correlation between the phonetic part of xíngshēng 形聲 characters, we know that the Chinese system basically reflects a network structure, since a large part of the characters can be decomposed into subparts which reflect other characters or recur across different characters. Not often really taken into consideration is the historical aspect of these connections. Not all phonetic units of xíngshēng characters were formed at the same time, and the characters reflect a complex evolution of character formation at different steps. 36 / 42

Slide 81

Slide 81 text

More on Networks Xiéshēng Networks Xiéshēng Networks Since Duàn Yùcái 段玉裁 detected the strong correlation between the phonetic part of xíngshēng 形聲 characters, we know that the Chinese system basically reflects a network structure, since a large part of the characters can be decomposed into subparts which reflect other characters or recur across different characters. Not often really taken into consideration is the historical aspect of these connections. Not all phonetic units of xíngshēng characters were formed at the same time, and the characters reflect a complex evolution of character formation at different steps. Instead of listing xíngshēng series in form of lists of characters and common component, we should create explicit networks, as they are much more transparent to display where scholars disagree in their analyses, but also which characters are immediately composed of other characters. 36 / 42

Slide 82

Slide 82 text

More on Networks Xiéshēng Networks Xiéshēng Networks 方 滂 訪 放 倣 房 防 芳 旁 膀 磅 37 / 42

Slide 83

Slide 83 text

More on Networks Xiéshēng Networks Xiéshēng Networks Displaying character structures, especially aspects of char- acter formation, with help of directed networks could greatly benefit not only scientific exchange among scholars, who would be encouraged to present their judgments more trans- parently, but also other aspects of Chinese writing, such as, e.g., pedagogical aspects of teaching the structure of the writing system to beginners, or information-theoretic as- pects. 38 / 42

Slide 84

Slide 84 text

More on Networks Dynamic Networks Dynamic Networks Not only the data we model in networks can be enhanced, also our methods to analyze the networks need to be fur- ther improved. As an example, consider dynamic networks, which would analyze and model network changes in time. By improving on these methods, we could, for example, com- pare fǎnqiè networks across different epochs, as well as rhyme networks from different authors, dialects, and styles. We could further try to induce fundamental hierarchies and relative time frames from xiéshēng networks. 39 / 42

Slide 85

Slide 85 text

Outlook Outlook Outlook 40 / 42

Slide 86

Slide 86 text

Outlook One of the major insights that I made during the last years in my research is that despite the great achievements scholars have made in historical linguistics, and especially in Chinese traditional phonology, we still lack clear-cut frameworks that help us to produce our data transparently. Historical linguis- tics is a data-driven discipline, but scholars tend to ignore this when presenting their incredible insights in an intrans- parent form. Networks can help in two ways here: first, they are a transparent way of data-representation; and second, they provide an added value in those cases, where data be- comes too large for scholars to be inspected by eye-balling only. 41 / 42

Slide 87

Slide 87 text

Outlook 多謝大家! 42 / 42