Slide 72
Slide 72 text
set of all T-length trajectories =
n
(u, y) 2 R(m+p)T : 9x 2 RnT s.t.
x+ = Ax + Bu , y = Cx + Du
o
| {z } | {z }
parametric state-space model non-parametric model from raw data
colspan
2
6
6
6
6
6
6
6
6
4
ud
1,1
yd
1,1
!
ud
1,2
yd
1,2
!
ud
1,3
yd
1,3
!
...
ud
2,1
yd
2,1
!
ud
2,2
yd
2,2
!
ud
2,3
yd
2,3
!
...
.
.
.
.
.
.
.
.
.
.
.
.
ud
T,1
yd
T,1
!
ud
T,2
yd
T,2
!
ud
T,3
yd
T,3
!
...
3
7
7
7
7
7
7
7
7
5
all trajectories constructible from finitely many previous trajectories
• standing on the shoulders of giants:
classic Willems’ result was only “if” &
required further assumptions: Hankel,
persistency of excitation, controllability
• terminology fundamental is justified : motion primitives, subspace SysID,
dictionary learning, (E)DMD, ... all implicitly rely on this equivalence
• many recent extensions to other system classes (bi-linear, descriptor,
LPV, delay, Volterra series, Wiener-Hammerstein, ...), other matrix
data structures (mosaic Hankel, Page, ...), & other proof methods
21/53