リンゴゲームと貧富の差 / Origin of the disparity of wealth
by
kaityo256
Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
1 30 慶應義塾大学理工学部物理情報工学科 渡辺宙志 2024年1月18日 研究室ミーティング リンゴゲームと貧富の差
Slide 2
Slide 2 text
2 30 貧富の差とは? 世の中には金持ちと貧乏人がいる これは能力の差のせいだろうか? それとも単なる運だろうか?
Slide 3
Slide 3 text
3 30 リンゴゲーム (1) 一人一つずつリンゴを持つ (2) 提供者と受領者をランダムに選び、提供者か ら受領者にリンゴを一つ渡す (リンゴを持って いなければ何もしない) 「やりとり」を十分繰り返したらリンゴの数はどうなるか?
Slide 4
Slide 4 text
4 30 10人の場合 持 っ て い る リ ン ゴ の 数 背番号 ※ 持っているリンゴの数が多い順に並べた
Slide 5
Slide 5 text
5 30 100人の場合 持 っ て い る リ ン ゴ の 数 背番号 ※ 持っているリンゴの数が多い順に並べた
Slide 6
Slide 6 text
6 30 1000人の場合 持 っ て い る リ ン ゴ の 数 背番号 ※ 持っているリンゴの数が多い順に並べた 半分以上の人がリンゴを持っていない リンゴを9個持っている人
Slide 7
Slide 7 text
7 30 貧富の差 最初は全員リンゴを一つずつ持っていたのに 「持てる者」「持たざる者」が生まれた
Slide 8
Slide 8 text
8 30 N=2の場合 1番の人 2番の人 確率1/2で1番から2番へ、確率1/2で2番から1番へリンゴを渡す
Slide 9
Slide 9 text
9 30 N=2の場合 状態は以下の3種類 1番が2つとも持っている 2人が1つずつ持っている 2番が2つとも持っている
Slide 10
Slide 10 text
10 30 マルコフ遷移図 1/2 1/2 1/2 1/2 1/2 1/2
Slide 11
Slide 11 text
11 30 マルコフ連鎖 𝑝1 𝑡 𝑝2 𝑡 𝑝3 𝑡 1番が2つとも持っている確率 2人が1つずつ持っている確率 2番が2つとも持っている確率 tステップ目に・・・
Slide 12
Slide 12 text
12 30 マルコフ連鎖 𝑝1 𝑡+1 = 1 2 𝑝1 𝑡 + 1 2 𝑝2 𝑡 𝑝2 𝑡+1 = 1 2 𝑝1 𝑡 + 1 2 𝑝3 𝑡 𝑝3 𝑡+1 = 1 2 𝑝2 𝑡 + 1 2 𝑝3 𝑡 1/2 1/2 1/2 1/2 1/2 1/2
Slide 13
Slide 13 text
13 30 マルコフ遷移 Ԧ 𝑝𝑡+1 = 𝑀 Ԧ 𝑝𝑡 と表すと 𝑀 = 1/2 1/2 0 1/2 0 1/2 0 1/2 1/2 定常状態があるなら Ԧ 𝑝∞ = 𝑀 Ԧ 𝑝∞ Ԧ 𝑝∞ は𝑀の固有値1に対応する固有ベクトル Ԧ 𝑝∞ = 1/3 1/3 1/3
Slide 14
Slide 14 text
14 30 定常状態 = = Ԧ 𝑝∞ = 1/3 1/3 1/3 すべてのミクロな状態が等確率で実現する
Slide 15
Slide 15 text
15 30 N=3 誰かが3つ独占している状態 x 3 誰かが2つ、誰かが1つ持っている状態 x 6 全員が1つずつ持っている状態 x 1 状態が10個あり、10状態のマルコフ遷移になる →面倒くさい マルコフ行列全体を考えずに定常状態を調べたい
Slide 16
Slide 16 text
16 30 詳細つり合い 一般のマルコフ遷移図の、ある2つの状態間の遷移だけに注目する
Slide 17
Slide 17 text
17 30 詳細つり合い A B 𝑃(𝐴 → 𝐵) 𝑃(𝐵 → 𝐴) 𝜋(𝐴) 𝜋(𝐵) 𝜋(𝐴) 状態Aにいる確率 𝜋(𝐵) 状態Bにいる確率 𝑃(𝐴 → 𝐵) 状態AからBに遷移する確率 𝑃(𝐵 → 𝐴) 状態BからAに遷移する確率
Slide 18
Slide 18 text
18 30 詳細つり合い 𝑃(𝐴 → 𝐵) 𝑃(𝐵 → 𝐴) 𝜋(𝐴) A国の人口 𝜋(𝐵) B国の人口 𝑃(𝐴 → 𝐵) 毎年、A国からB国に移住する割合 𝑃(𝐵 → 𝐴) 毎年、B国からA国に移住する割合
Slide 19
Slide 19 text
19 30 詳細つり合い 𝜋(𝐴)𝑃(𝐴 → 𝐵) 毎年、A国からB国に移住する人数 𝜋(𝐵)𝑃(𝐵 → 𝐴) 毎年、B国からA国に移住する人数 定常状態(人口が変わらない)なら 𝜋 𝐴 𝑃 𝐴 → 𝐵 = 𝜋 𝐵 𝑃 𝐵 → 𝐴
Slide 20
Slide 20 text
20 30 詳細つり合い A B 𝑃(𝐴 → 𝐵) 𝑃(𝐵 → 𝐴) 𝜋(𝐴) 𝜋(𝐵) 定常状態において以下が成り立つ 𝜋 𝐴 𝜋 𝐵 = 𝑃 𝐵 → 𝐴 𝑃 𝐴 → 𝐵 任意の2状態間の遷移確率がわかれば 定常状態の確率の比が求まる
Slide 21
Slide 21 text
21 30 N=3の場合 提供者に3番が選ばれ、受領者が1番である確率(1/6) 提供者に1番が選ばれ、受領者が3番である確率(1/6) リンゴゲームは、任意の遷移可能な2状態間の遷移確率は等しい 逆過程
Slide 22
Slide 22 text
22 30 一般のNの場合 𝜋 𝑖 𝜋 𝑗 = 𝑃 𝑗 → 𝑖 𝑃 𝑗 → 𝑖 = 1 ある2状態𝑖, 𝑗について 𝑃 𝑗 → 𝑖 = 𝑃 𝑖 → 𝑗 定常状態は ∴ 𝜋 𝑖 = 𝜋 𝑗 任意の状態𝑖, 𝑗について成り立つので 𝜋 1 = 𝜋 2 = 𝜋 3 = ⋯ すべてのミクロな状態の実現確率は等しい 等重率の原理
Slide 23
Slide 23 text
23 30 N=3 すべてのミクロな状態が等しい確率で実現する =状態数に確率が比例する 誰かが3つ独占している状態 x 3 誰かが2つ、誰かが1つ持っている状態 x 6 全員が1つずつ持っている状態 x 1 ↑この状態が一番実現確率が高い
Slide 24
Slide 24 text
24 30 一般のNの場合 全員平等な世界(状態数1) ・・・ 富を誰かが全て独占(状態数N) ・・・ どこか中間に最も実現確率の高い世界
Slide 25
Slide 25 text
25 30 一般のNの場合 𝑓𝑘 リンゴをk個持っている人の数 𝑁 リンゴの総数と人数 総人口 𝑘 𝑁 𝑓𝑘 = 𝑁 リンゴの総数 𝑘 𝑁 𝑘𝑓𝑘 = 𝑁 上記の条件の元でエントロピーを最大化 𝑆 = 𝑘 𝑁 𝑓𝑘 log 𝑓𝑘
Slide 26
Slide 26 text
26 30 一般のNの場合 kに関して連続極限をとる 𝑓𝑘 → 𝑓(𝑥) න 𝑓𝑑𝑥 = 𝑁 𝑘 𝑁 𝑓𝑘 = 𝑁 𝑘 𝑁 𝑘𝑓𝑘 = 𝑁 න 𝑥𝑓𝑑𝑥 = 𝑁 制約条件
Slide 27
Slide 27 text
27 30 一般のNの場合 𝐹 = න 𝛽𝑥𝑓 + 𝑓log 𝑓 + 𝜆𝑓 𝑑𝑥 ラグランジュの未定定数法 න 𝑓𝑑𝑥 = 𝑁 න 𝑥𝑓𝑑𝑥 = 𝑁 リンゴの総数に関する制限を記述する ラグランジュの未定定数 確率の保存を記述する ラグランジュの未定定数
Slide 28
Slide 28 text
28 30 変分原理 𝐹 = න 𝛽𝑥𝑓 + 𝑓log 𝑓 + 𝜆𝑓 𝑑𝑥 𝛿𝐹 𝛿𝑓 = 0 𝑓 = 𝑍−1exp −𝛽𝑥 𝑍 ≡ exp 𝜆 + 1 = න exp(−𝛽𝑥) 𝑑𝑥 カノニカル分布が実現する ただし𝑍は分配関数 𝛽 = 1, 𝑍 = 1/𝑁 制約条件より
Slide 29
Slide 29 text
29 30 N=10の場合 𝑓 = 𝑁exp −𝑥 持っているリンゴの数 人 数 の 期 待 値
Slide 30
Slide 30 text
30 30 まとめ 現実のこの世界は・・・? • リンゴゲームはランダムに選んだ二人でリンゴ(財産)をやり とりするゲーム • ミクロにはすべての状態が等確率で出現する →等重率の原理 • マクロには、富の独占が起きる →貧富の差 • 全く公平なルールで平等な初期条件から開始したにも関わら ず、最終的には貧富の差が生まれる →誰が富むかはただの運? • リンゴをエネルギーとみなすと粒子がエネルギーを互いにや り取りする物理系と等価となり、カノニカル分布が実現する