Slide 1

Slide 1 text

Operating at force, power, and thermal limits in electrically-actuated commercial legged robots Avik De Co-founder & CTO, Ghost Robotics Previously: Postdoc @ Harvard, Ph.D. @ UPenn

Slide 2

Slide 2 text

Bio-inspired robot locomotion Minitaur (6kg, 8dof direct drive) 100mg 1g 10g 100g 1kg 10kg 100kg Jerboa (3kg, 4dof) Spirit 40 (12kg, 12dof) Vision 60 (43kg, 12dof)

Slide 3

Slide 3 text

Ghost Robotics Vision 60, Spirit 40 • Company: ~20 people, Phila., PA • Design priorities: cost- effective, efficient, sealed • Common, not bespoke, hardware components • Complexity in software, not hardware: remove sensors (e.g., force/torque) • Design optimized for mechanical, computational efficiency (higher run time, range) • Weatherproof: can use in rain and swamps • Limitations • Not payload mule (20lb advertised)

Slide 4

Slide 4 text

Applications: mobile sensing, mobile manipulation Persistent security with autonomous charging CBRN/EOD

Slide 5

Slide 5 text

Optimize design for fundamental constraints: force, power Power breakdown Power (W) Motors 180--280 Low level electronics 10 Blind locomotion <1 Gait planner <5 Autonomy 15 • “Autonomy” requires power autonomy • Maximize range before recharge • Vision 60 total CoT 0.46—0.8, depending on terrain • Also bandwidth, transparency Minitaur: update rate 1000 Hz

Slide 6

Slide 6 text

Motivation: analytically-guided design Motor Motor controller Gearbox Compliant element Leg kinematics Dynamic task specification for gearbox selection e.g. [De et al (2011)] e.g. [Hollerbach (1991)] [Wensing (2017)] Huge amount of past work… 𝑢, 𝑘𝑜 , … 𝑟, 𝑑, 𝑙, … , 𝐿, 𝑅, … 𝐺, 𝐽𝐺 𝑘, 𝑏, … 𝑙𝑖 , … Platform morphology 𝑑, 𝜅, 𝜌𝑡 , 𝑚𝑡 , … e.g. [De et al (2018)]

Slide 7

Slide 7 text

Actuators for Robotics Motor controllers • 50V single power supply • 40A+ RMS • >500A peak (voltage mode), 80A peak (current mode) • EtherCAT interface • ~200us full loop ping • Command: voltage, position, q-current • Sensor info: rotor position, q-current

Slide 8

Slide 8 text

Commonly-used motor models in robotics http://ctms.engin.umich.edu/CTMS/index.php?example= MotorSpeed&section=SystemModeling http://www.vgt.bme.hu/info_en/research/sim/fem/1.htm Deficiencies: • only one control input • does not explain full torque output • underestimates max power/max speed Model • 𝜄 current • 𝑣 voltage • 𝐿 inductance • 𝑅 resistance • 𝑘𝑒 back-EMF constant Problems: • Brittle (hard to generalize) • No analytical insight • Time/computation intensive Analytical tractability

Slide 9

Slide 9 text

Equations of motion Electrical Mechanical • Transform to rotor frame • Rotor frame EOM don’t have 𝜃𝑒 -dependence • Power constraint from electronics: A three-phase BLDC motor model https://www.mathworks.com/help/physmod/sps/ref/brushlessdcmotor.html Model • 𝜄, 𝑥 (stator, rotor) currents • 𝑣, 𝑢 (stator, rotor) voltages • 𝐿 inductance • 𝑅 resistance • 𝑘𝑒 back-EMF constant • 𝜔𝑚 mechanical speed • 𝑛 # pole pairs • 𝜃𝑒 electrical angle • 𝛽 𝜃𝑒 back-EMF waveform

Slide 10

Slide 10 text

Controlling the three-phase model Energy balance: Set control goal: • Minimize heat • Maximize power or torque Input electrical power Joule heating Mechanical output power Transient Conventional Strategies • Feedback torque control (TC) using current sensing • Typical PI diagonal current control • Usually set Id -> 0 • Voltage control (VC) – only control Vq

Slide 11

Slide 11 text

New “Angle Control” – couple d,q axes for task Peak torque Peak power Vlim- constrained • Recall current dynamics • Note that where 𝜔𝑚 - rotor speed (measurement), 𝜏𝑒 - elec time const (fixed param) • Idea: use both dq axes to align with 𝑟 when ሶ 𝑥 = 0 (tune for ҧ 𝑥 equilibrium condition) := Steady state operation: [1] A. De, A. Stewart-Height, and D. E. Koditschek, “Task-Based Control and Design of a BLDC Actuator for Robotics,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2393--2400, 2019.

Slide 12

Slide 12 text

AC disadvantage and variation with motor design Disadvantage: heat production AC advantage (peak torque ratio) vs. VC (blue) and TC (red) [1] A. De, A. Stewart-Height, and D. E. Koditschek, “Task-Based Control and Design of a BLDC Actuator for Robotics,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2393--2400, 2019.

Slide 13

Slide 13 text

Making it relevant to robotics 1DOF experimental setup • “Inverted hopper” with stance and aerial phases • Fully instrumented with a single actuator • Showing braking trials here 𝑚 𝐽𝑚 𝜏𝑚 𝑧 Flight Stance Lower stopping time when power-constrained [1] A. De, A. Stewart-Height, and D. E. Koditschek, “Task-Based Control and Design of a BLDC Actuator for Robotics,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2393--2400, 2019.

Slide 14

Slide 14 text

Summary • Task-based control can help get closer to fundamental limits • Use task to inform control strategy – rethink interface to motor controllers • Co-design