B, Disjunction A ∨ B corresponds to a disjoint sum A + B Implication A ⊃ B corresponds to function space A → B. A proof of the proposition A ⊃ B consists of a procedure that given a proof of A yields a proof of B.

B, Disjunction A ∨ B corresponds to a disjoint sum A + B Implication A ⊃ B corresponds to function space A → B. A proof of the proposition A ⊃ B consists of a procedure that given a proof of A yields a proof of B.

B, Disjunction A ∨ B corresponds to a disjoint sum A + B Implication A ⊃ B corresponds to function space A → B. A proof of the proposition A ⊃ B consists of a procedure that given a proof of A yields a proof of B.

B, Disjunction A ∨ B corresponds to a disjoint sum A + B Implication A ⊃ B corresponds to function space A → B. A proof of the proposition A ⊃ B consists of a procedure that given a proof of A yields a proof of B.