Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Nonconvex Compressed Sensing with the Sum-of-Sq...

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for Tasuku Soma Tasuku Soma
January 11, 2016
2.2k

Nonconvex Compressed Sensing with the Sum-of-Squares Method

SODA 2016

Avatar for Tasuku Soma

Tasuku Soma

January 11, 2016
Tweet

More Decks by Tasuku Soma

Transcript

  1. Nonconvex Compressed Sensing with the Sum-of-Squares Method Tasuku Soma (Univ.

    Tokyo) Joint work with: Yuichi Yoshida (NII&PFI) 1 / 20
  2. Compressed Sensing Given: A ∈ Rm×n (m n) and y

    = Ax, Task: Estimate the original sparse signal x ∈ Rn. y = A x ≤ s nonzeros 2 / 20
  3. Compressed Sensing Given: A ∈ Rm×n (m n) and y

    = Ax, Task: Estimate the original sparse signal x ∈ Rn. y = A x ≤ s nonzeros Applications: Image Processing, Statistics, Machine Learning... 2 / 20
  4. 1 Minimization (Basis Pursuit) 0 1 min z 1 sub.

    to Az = y • Convex relaxation for 0 minimization • For a subgaussian A with m = Ω(s log n s ), 1 minimization reconstructs x. [Cand` es-Romberg-Tao ’06, Donoho ’06] s: sparsity of x (maybe unknown) 3 / 20
  5. Nonconvex Compressed Sensing 0 1/2 1 q minimization (0 <

    q ≤ 1): [Laska-Davenport-Baraniuk ’09,Cherian-Sra-Papanikolopoulos ’11] min z q q sub. to Az = y 4 / 20
  6. Nonconvex Compressed Sensing 0 1/2 1 q minimization (0 <

    q ≤ 1): [Laska-Davenport-Baraniuk ’09,Cherian-Sra-Papanikolopoulos ’11] min z q q sub. to Az = y • Requires fewer samples than 1 minimization • Recovers arbitrary sparse signals as q → 0 • Nonconvex Optimization! 4 / 20
  7. Stable Signal Recovery x needs not to be sparse but

    close to a sparse signal. 5 / 20
  8. Stable Signal Recovery x needs not to be sparse but

    close to a sparse signal. A ∈ Rm×n and ∆ : Rm → Rn are p -stable recovery ⇐⇒ ∆(Ax) − x p ≤ O(σs (x)p ) for any x ∈ Rn. 5 / 20
  9. Stable Signal Recovery x needs not to be sparse but

    close to a sparse signal. A ∈ Rm×n and ∆ : Rm → Rn are p -stable recovery ⇐⇒ ∆(Ax) − x p ≤ O(σs (x)p ) for any x ∈ Rn. p distance to s-sparse vector 5 / 20
  10. Stable Signal Recovery x needs not to be sparse but

    close to a sparse signal. A ∈ Rm×n and ∆ : Rm → Rn are p -stable recovery ⇐⇒ ∆(Ax) − x p ≤ O(σs (x)p ) for any x ∈ Rn. p distance to s-sparse vector • Gaussian matrix with m = Ω(s log n s ) and 1 minimization are 1 -stable [Cand` es-Romberg-Tao ’06,Cand` es ’08] • Gaussian A and q minimization are q -stable (0 < q ≤ 1) [Cohen-Dahmen-DeVore ’09] • Smaller q yields better bound when noise is sparse. 5 / 20
  11. Our Result Theorem For x ∞ ≤ 1 and fixed

    q = 2−k , there exist A ∈ Rm×n and a polytime algorithm ∆ : Rm → Rn s.t. ∆(Ax) − x q ≤ O(σs (x)q ) + ε, provided that m = Ω(s2/q log n). • (Nearly) q -stable recovery • #samples >> O(s log(n/s)) (Sample Complexity Trade Off) • Use of SoS Method and Ellipsoid Method Aij ∼ {±1/ √ m} 6 / 20
  12. High Level Picture Naive Idea: Reduce q minimization to polynomial

    optimization min z q q sub. to Az = y → Does the SoS method find an “optimal solution”? 7 / 20
  13. High Level Picture Naive Idea: Reduce q minimization to polynomial

    optimization min z q q sub. to Az = y → Does the SoS method find an “optimal solution”? ×No relaxed solutions “optimal” 7 / 20
  14. High Level Picture Naive Idea: Reduce q minimization to polynomial

    optimization min z q q sub. to Az = y → Does the SoS method find an “optimal solution”? ×No relaxed solutions relaxed solutions “optimal” Idea: Add cuts to the SoS method min z q q s.t. Az = y, Additional Constraints 7 / 20
  15. SoS Method [Lasserre ’06, Parrilo ’00, Nesterov ’00, Shor ’87]

    Polynomial Optimization: f, g1 , . . . , gi ∈ R[z]: polynomials min z f(z) sub. to gi (z) = 0 (i = 1, . . . , m) 8 / 20
  16. SoS Method [Lasserre ’06, Parrilo ’00, Nesterov ’00, Shor ’87]

    Polynomial Optimization: f, g1 , . . . , gi ∈ R[z]: polynomials min z f(z) sub. to gi (z) = 0 (i = 1, . . . , m) SoS Relaxation (of degree d): min E E[f(z)] sub. to E : R[z]d → R, linear operator “pseudoexpectation” E[1] = 1 E[p(z)2] ≥ 0 (p ∈ R[z] : deg(p) ≤ d/2) E[gi (z)p(z)] = 0 (p ∈ R[z] : deg(gi p) ≤ d, i = 1, . . . , m) 8 / 20
  17. Facts on SoS Method • The SoS Relaxation (of degree

    d) reduces to Semidefinite Programming (SDP) with nO(d)-size matrix. 9 / 20
  18. Facts on SoS Method • The SoS Relaxation (of degree

    d) reduces to Semidefinite Programming (SDP) with nO(d)-size matrix. • Dual View: SoS Proof System Any (low-degree) “proof” in SoS proof system yields an algorithm via the SoS method. 9 / 20
  19. Facts on SoS Method • The SoS Relaxation (of degree

    d) reduces to Semidefinite Programming (SDP) with nO(d)-size matrix. • Dual View: SoS Proof System Any (low-degree) “proof” in SoS proof system yields an algorithm via the SoS method. • Very Powerful Tool in Computer Science: • Subexponential Alg. for UG [Arora-Barak-Steurer’10] • Planted Sparse Vector [Barak-Kelner-Steurer’14] • Sparse PCA [Ma-Wigderson’14] 9 / 20
  20. Outline q -stable: ˆ x − x q q ≤

    O(1) · σs (x)q q q -robust null space property A has small coherence A is a Rademacher matrix q -stability proof
  21. Outline q -stable: ˆ x − x q q ≤

    O(1) · σs (x)q q q -robust null space property A has small coherence A is a Rademacher matrix q -stability proof E ver q -stable: E z − x q q ≤ O(1) · σs (x)q q E ver q -robust null space property (2) (1) Our proof 10 / 20
  22. Basic Idea Formulate q minimization as polynomial optimization: min z

    q q sub. to Az = y Note: |z(i)|q is not a polynomial, but representable by lifting; |z(i)| 4 = z(i)2, |z(i)| ≥ 0 11 / 20
  23. Basic Idea Formulate q minimization as polynomial optimization: min z

    q q sub. to Az = y Note: |z(i)|q is not a polynomial, but representable by lifting; |z(i)| 4 = z(i)2, |z(i)| ≥ 0 ×Solutions of SoS method do not satisfy triangle inequalities: E z + x q q E z q q + x q q 11 / 20
  24. Basic Idea Formulate q minimization as polynomial optimization: min z

    q q sub. to Az = y Note: |z(i)|q is not a polynomial, but representable by lifting; |z(i)| 4 = z(i)2, |z(i)| ≥ 0 ×Solutions of SoS method do not satisfy triangle inequalities: E z + x q q E z q q + x q q Add Valid Constraints! min z q q s.t. Az = y, Valid Constraints 11 / 20
  25. Triangle Inequalities z + x q q ≤ z q

    q + x q q We have to add |z(i) + x(i)|q, but do not know x(i). 12 / 20
  26. Triangle Inequalities z + x q q ≤ z q

    q + x q q We have to add |z(i) + x(i)|q, but do not know x(i). Idea: Using Grid L: set of multiples of δ in [−1, 1]. -1 0 1 δ • new variable for |z(i) − b|q (b ∈ L) • triangle inequalities for |z(i) − b|q, |z(i) − b |q, and |b − b |q (b, b ∈ L) 12 / 20
  27. Robust q Minimization Instead of x, we will find xL

    ∈ Ln closest to x. Robust q Minimization min z q q s.t. y − Az 2 2 ≤ η2 η = σmax (A) √ sδ 13 / 20
  28. Robust q Minimization Instead of x, we will find xL

    ∈ Ln closest to x. Robust q Minimization min z q q s.t. y − Az 2 2 ≤ η2 η = σmax (A) √ sδ q Robust Null Space Property vS q q ≤ ρ v S q q + τ Av q 2 for any v and S ⊆ [n] with |S| ≤ s. 13 / 20
  29. Robust q Minimization Instead of x, we will find xL

    ∈ Ln closest to x. Robust q Minimization min z q q s.t. y − Az 2 2 ≤ η2 η = σmax (A) √ sδ q Pseudo Robust Null Space Property ( q -PRNSP) E vS q q ≤ ρ E v S q q + τ E Av 2 2 q/2 for any v = z − b (b ∈ Ln) and S ⊆ [n] with |S| ≤ s. 13 / 20
  30. (1) PRNSP =⇒ Stable Recovery Theorem If E satisfies q

    -PRNSP, then E z − xL q q ≤ 2(1 + ρ) 1 − ρ σs (xL )q q + 21+qτ 1 − ρ ηq, where xL is the closest vector in Ln to x. Proof Idea: A proof of stability only needs: • q q triangle inequalities for z − xL , x and z + xL • 2 triangle inequality 14 / 20
  31. Rounding Extract an actual vector ˆ x from a pseudoexpectation

    E. ˆ x(i) := argmin b∈L E|z(i) − b|q (i = 1, . . . , n) Theorem If E satisfies PRNSP, ˆ x − xL q q ≤ 2 2(1 + ρ) 1 − ρ σs (xL )q q + 21+qτ 1 − ρ ηq 15 / 20
  32. Outline q -stable: ˆ x − x q q ≤

    O(1) · σs (x)q q q -robust null space property A has small coherence A is a Rademacher matrix q -stability proof E ver q -stable: E z − x q q ≤ O(1) · σs (x)q q E ver q -robust null space property (2) (1) Our proof 16 / 20
  33. Imposing PRNSP How can we obtain E satisfying PRNSP? Idea:

    Follow known proofs for robust NSP! • From Restricted Isometry Property (RIP) [Cand` es ’08] • From Coherence [Gribonval-Nielsen ’03, Donoho-Elad ’03] • From Lossless Expander [Berinde et al. ’08] 17 / 20
  34. Coherence The coherence of a matrix A = [a1 .

    . . an ] is µ = max i j | ai , aj | ai 2 aj 2 Facts: • If µq < 1 2s , q Robust NSP holds. • If A is a Rademacher matrix with m = O(s2/q log n), then µq < 1 2s w.h.p. 18 / 20
  35. Small Coherence =⇒ PRNSP Issue: Naive import needs exponentially many

    variables and constraints! Lemma If A is a Rademacher matrix, • additinal variables are polynomially many • additional constraints have a separation oracle Thus ellipsoid methods find E with PRNSP. 19 / 20
  36. Our Result Theorem For x ∞ ≤ 1 and fixed

    q = 2−k , there exist A ∈ Rm×n and a polytime algorithm ∆ : Rm → Rn s.t. ∆(Ax) − x q ≤ O(σs (x)q ) + ε, provided that m = Ω(s2/q log n). • (Nearly) q -stable recovery • #samples >> O(s log(n/s)) (Sample Complexity Trade Off) • Use of SoS Method and Ellipsoid Method Aij ∼ {±1/ √ m} 20 / 20
  37. Putting Things Together Using a Rademacher matrix yields PRNSP: E

    vS q q ≤ O(1) · E v S q q + O(s) · E Av 2 2 q/2 21 / 20
  38. Putting Things Together Using a Rademacher matrix yields PRNSP: E

    vS q q ≤ O(1) · E v S q q + O(s) · E Av 2 2 q/2 This guarantees: ˆ x − x q q ≤ O(σs (xL )q q ) + O(s) · ηq 21 / 20
  39. Putting Things Together Using a Rademacher matrix yields PRNSP: E

    vS q q ≤ O(1) · E v S q q + O(s) · E Av 2 2 q/2 This guarantees: ˆ x − x q q ≤ O(σs (xL )q q ) + O(s) · ηq Theorem If we take δ small, then the rounded vector ˆ x satisfies ˆ x − x q q ≤ O(σs (x)q q ) + ε. (pf) η = σmax (A) √ sδ and σmax (A) = O(n/m) 21 / 20