Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
04 データの準備
Search
419kfj
October 09, 2023
0
61
04 データの準備
SSJDA計量分析セミナー
対応分析/多重対応分析の原理と実際 04
419kfj
October 09, 2023
Tweet
Share
More Decks by 419kfj
See All by 419kfj
R.Q.(リサーチ・クエスチョン)構築という視点から 伝統的検定手法とベイジアン推定を比較する
419kfj
0
62
多重対応分析/構造化データ解析の原理と研究者視点の介在点「文化と不平等」調査データの分析(1)
419kfj
0
86
Methods and Examples of Correspondence Analysis
419kfj
0
110
01 Introduction
419kfj
0
95
02 ベクトル行列演算とCAの数理
419kfj
0
120
03 CAの数理その2
419kfj
0
58
05 CAとMCA事例
419kfj
0
68
06 MCA_01
419kfj
0
58
07 MCAからGDAへ
419kfj
0
110
Featured
See All Featured
Statistics for Hackers
jakevdp
799
220k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
How to Ace a Technical Interview
jacobian
277
23k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Making Projects Easy
brettharned
116
6.3k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
For a Future-Friendly Web
brad_frost
179
9.8k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Navigating Team Friction
lara
187
15k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
800
Transcript
計量分析セミナー データ準備編 2023/09/06「対応分析/多重対応分析の原理と実際」 津⽥塾⼤学 数学・計算機科学研究所 藤本⼀男
[email protected]
対応分析/多重対応分析とデータの⽤意 • 対応分析(CA)/多重対応分析(MCA)の処理⾃体は、⼀⾏で すみます。 • ⼤切なのは、処理するデータを適切な形に「整形」すること
データ⽤意の形態 • packageに付属する「サンプルデータ」を使う • 前処理不要 • スクリプトの中でデータを書く • ⼩規模ならOK。 •
外部ファイルを読み込む(1) • ⼤規模なものはほぼこれ。 • ExcelやCSVでつくられたデータ • SSJDAの「オンライン集計」で取得したデータを読み込む • e-statから取得したデータを読み込む • 外部ファイルを読み込む(2) • SPSSのLabeled SPSSを読み込む • SSJDAに預託されているデータを利⽤申請して貸与される。SPSS。 • ISSPにユーザ登録して、ダウンロードする。SPSS
Rが扱うデータの属性 • ⽂字 charcter • 数値 numeric、integer • 因⼦ factor
• 論理 logical • ベクトル • リスト • 表 • データフレーム • tibble
CA/MCAが読み込めるデータ属性 • エラーに遭遇したら • CA/MCAのfunctionのマニュアルを確認。 • dataframe • tibble •
table
CA/MCAが出⼒するresult • list • 複数の属性のデータを⼀つにまとめている。 • listの参照の仕⽅ • res.CA にresultを⼊れていたら…
• そのまま名前をたたく • summary() • などなど、これもfunctionごと。 • listの構成は、 • str() コマンドでつかめます。
データの「前処理」 • packageについてくる「サンプルデータ」以外は、なんらかの整 形、属性の変更が必要。 • その時の注意! • ダウンロードしたExcelやCSVのファイルを整形するときは、Rに読 み込んでからやるようにしましょう! •
Rに読み込む前に「不要な⾏/列を削除」したりすると、そのデータの更新版 を⼿にいれたときに、またその⼿作業をやらないといけない。 • ⼤抵間違う→修正にてまどう。 • ⼿作業修正はやらない。 • 修正はスクリプトで!(履歴がのこり、⾃動処理が可能です。) • もちろん、それが時間がかかりそうであれば、⼿作業で処理しない といけないですが、Rで出来ない「整形」はまずないです。 • それをできるように技を磨いてください。dplyr、tidyr などは必修です。
外部からの読み込みの例 • SSJDAのオンライン処理でクロス表に集計。 • それをダウンロード。 • 2元クロスですが、header⾏がついているので、 • read_excel •
n⾏⾶ばして読み込む、機能をつかいます。 • SSJDAのオンライン処理で、多元クロスに集計したもの • ダウンロードする⾏なり列なりが、6万4000⾏をこえなければ、デー タのロストなしに取得可能。それを、Rに読み込んで、個票に回復す ることが可能です。
Excelでダウンロード このクロス表を対応分析したいのだが • 1..3 ⾏は不要 • 5⾏は不要。4⾏を列⾒出しにつかい たい。 • 11⾏N=も不要。
• H列、不要。