Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
06 MCA_01
Search
419kfj
October 09, 2023
0
72
06 MCA_01
SSJDA計量分析セミナー
対応分析/多重対応分析の原理と実際 06
419kfj
October 09, 2023
Tweet
Share
More Decks by 419kfj
See All by 419kfj
R.Q.(リサーチ・クエスチョン)構築という視点から 伝統的検定手法とベイジアン推定を比較する
419kfj
0
72
多重対応分析/構造化データ解析の原理と研究者視点の介在点「文化と不平等」調査データの分析(1)
419kfj
0
130
Methods and Examples of Correspondence Analysis
419kfj
0
110
01 Introduction
419kfj
0
120
02 ベクトル行列演算とCAの数理
419kfj
0
150
03 CAの数理その2
419kfj
0
70
04 データの準備
419kfj
0
73
05 CAとMCA事例
419kfj
0
85
07 MCAからGDAへ
419kfj
0
130
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
135
9.6k
RailsConf 2023
tenderlove
30
1.3k
GraphQLとの向き合い方2022年版
quramy
49
14k
The Illustrated Children's Guide to Kubernetes
chrisshort
49
51k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
990
Designing Experiences People Love
moore
142
24k
Side Projects
sachag
455
43k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Transcript
CAとMCA(1) 2023/09/06 藤本⼀男
[email protected]
CAからMCAへ • データ形式 • CAはクロス表の2変数データ(クロス表) • MCAは3変数以上の個体x変数データ(調査の集計表) • 古典的なMCAの技法 •
指⽰⾏列(indicator Matrix)に対するCA • Burt⾏列に対するCA • 本講習ではindicator ⾏列に対するCAを扱います。 • Le Roux & Rouanetの『多重対応分析』も、これを⽤いてます。 • FactoMineR::MCAは、選択できる
indicator⾏列とはなにか • indicator ⾏列版のMCAの処理 • 個体x変数のデータを受け取る • 変数部分を、あるルールで展開する。 • 変数カテゴリを並べる。
• その⾏の選択された場所に1をたてる。 • 選択されてないところには0。 • 1は必ず1つたっている。そのために、⾏和はすべて「変数の数」に 等しくなっている。 • Complete Disjunctive Coding • 完全排他コーディング • 『多重対応分析』の⽤語集も参照。
処理の確認 • GDAtools::dichotom を⽤いて、indicator⾏列化する。 • そうしてできた、indicator⾏列にCAを⾏う。 この部分をindicator⾏列にしてみた。
指⽰⾏列にしてCAをします
CAの結果。変数マップ
個体ポイント、カテゴリポイント • これは同じ。 • 軸の寄与率が異なっている。 • これは、MCAに適⽤される修正寄与率というもの。 • 寄与率は、全体の慣性を座標軸に割り振るものなので、軸がふ えると(つまり次元が増えると)、⼀つあたりの寄与率が⼩さ
くなってしまう。そこで、平均寄与率以下を無視する補正を⾏ う。 • Benzécreの補正 • LeRoux&Rouanet/GDAtoolsは、こちらをつかっている。 • Greenacreの補正 • ca::adjustedに実装されている。
個体マップ
CAとMCAの関係 MCA indicator Matrixに CA Burt Matrixに CA GDAtoolsのspeMCA FactoMineR::MCA
FactoMineR::MCA method=”Burt” method=”indicator” MCAには、indicator、Burt以外にもさまざまな⼿法が開発されているので、どのMCAを⽤いた分析 なのかを明⽰する必要があります。 また、MCAには、⽣成された空間の座標軸が多くなることから、各軸の分散率が⼩さくなります。そ の問題に対処するために、Benzécri や Greenacreが補正⽅法を提案しており、どの⽅法での分散率な のかの明⽰も必要です。
SSM2005オンライン集計から個票へ ⾏に、留置A票の問16ア、イ、 ウと性別を投⼊。 列に年齢を投⼊ この多元クロスをダウンロー ドする。
やり⽅の詳細は、以下を参照してくださ い。 • https://rpubs.com/kfj419/1077498 • 原理は以下の通りです。 • SSJDAのオンライン集計で、分析したい変数を⼀つのクロス表にまと める。 •
出⼒するフォーマットが(古い?)Excelの仕様らしく、⾏数、列数が 64Kを超えると脱落が起こります。(普通はおこらない…) • この例では、列に「年齢」50列(合計55列)を配置し、⾏には、問16 アイウ(各5個のカテゴリ)と性別(2)を配置するので、 5x5x5x2=1250⾏。 • つまり、1250x55⾏のデータ⾏列がダウンロードされます。 • これを対象に処理します。
こうやってつくったSSM2005のサブセッ トを使います。 くわえて「⾯接票」の 性別、年齢、を使います。 https://ssjda.iss.u-tokyo.ac.jp/Direct/gaiyo.php?lang=jpn&eid=0764 の調査票リンクから取得
recode • 問16ア、イ、ウは、Q16a、b、c にrename • 回答の1234は、ABCDにrecode • 年齢は、10歳刻みの年代にrecode
分析の⼿順 • 分析対象の変数の分布を確認 • 度数分布を確認。 • 棒グラフで変数のないの傾向を把握。 • クロス集計による連関の確認 •
クロス表 • mosaic plot で期待値からのはずれるセル(カテゴリの組み合わせ)を 確認。 • MCAを実⾏ • Rmarkdownで記述したスクリプトをもとに説明していきます。
MCAのリザルトの確認⼿順 • 変数マップと個体マップを描く • 変数マップをみながら、⽣成された空間の軸を解釈する • ポイントは、寄与率(contribution) • その軸に寄与しているカテゴリを⼤きさ、向きとともに判定し、軸の 名前をつける。これは⾃動的には無理。分析者のデータ(変数)に対
する専⾨的な知識、洞察⼒が問われます。 • ⾃動的に、⽂化資本+/-、経済資本-/プラス、という軸が現れるわけで はありません。 • chatGPTに⼿伝ってもらうこともありかと。 • この名付けられた軸が、新たな「変数」となり、各ポイント は、その変数が張る空間に位置づけられることになります。
「追加変数」を活⽤する • CAで空間⽣成するポイントは、周辺度数(⾏和、列和)をもってます。 • ⾏空間(個体空間)のポイントは、列空間(変数空間)のポイントすべて の「集計」関係にある。⾏と列がつながっている。 • Transition Formura(遷移公式)で表現されます。 •
そこで、質量をもっていない変数(これを追加変数(supplimentary valiable)と呼びます)を⽤意して、それを⽣成された空間に射影する、 ということが可能になります。 • こうすると、射影された「空間の構造」を「追加変数で説明する」ことが できます。 • 空間⽣成に寄与する変数:Active変数 • そこに射影される変数:Supplimantary変数 • 変数をこのように区分することを「構造設計」と呼びます。