Are you out of memory, or have plenty to spare?

1761ecd7fe763583553dde43e62c47bd?s=47 Joshua Thijssen
November 14, 2015
100

Are you out of memory, or have plenty to spare?

1761ecd7fe763583553dde43e62c47bd?s=128

Joshua Thijssen

November 14, 2015
Tweet

Transcript

  1. Out of memory or plenty to spare? 1 Joshua Thijssen

    jaytaph The fine details of reading memory consumption
  2. Disclaimers: 2 No PHP (but we will still talk about

    it). Pretty advanced stuff. Simplified.
  3. Q: How much memory is our server using? 3

  4. 4

  5. 4

  6. $ free -m total used free shared buffers cached Mem:

    3963 3500 462 0 722 1263 -/+ buffers/cache: 1515 2448 Swap: 400 20 379 5
  7. $ free -m total used free shared buffers cached Mem:

    3963 3500 462 0 722 1263 -/+ buffers/cache: 1515 2448 Swap: 400 20 379 5
  8. 6 Free Used Buffers / Cache

  9. 6 Free Used Buffers / Cache Free

  10. 7 Free Used Buffers / Cache Free

  11. Active / Total Objects (% used) : 2187767 / 2283870

    (95.8%) Active / Total Slabs (% used) : 261417 / 261421 (100.0%) Active / Total Caches (% used) : 114 / 192 (59.4%) Active / Total Size (% used) : 1013948.21K / 1024061.72K (99.0%) Minimum / Average / Maximum Object : 0.02K / 0.45K / 4096.00K OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME 825808 825378 99% 0.98K 206452 4 825808K ext4_inode_cache 522921 512677 98% 0.19K 24901 21 99604K dentry 394290 364506 92% 0.10K 10110 39 40440K buffer_head 166914 142785 85% 0.04K 1686 99 6744K ext4_extent_status 143756 142975 99% 0.05K 1732 83 6928K jbd2_inode 63700 62887 98% 0.56K 9100 7 36400K radix_tree_node 42273 29552 69% 0.06K 671 63 2684K kmalloc-64 23870 19345 81% 0.12K 770 31 3080K kmalloc-96 16884 14623 86% 0.06K 268 63 1072K anon_vma_chain 12144 12024 99% 0.12K 368 33 1472K kernfs_node_cache 11424 10582 92% 0.19K 544 21 2176K vm_area_struct 10044 7897 78% 0.03K 81 124 324K kmalloc-32 9331 9135 97% 0.56K 1333 7 5332K inode_cache 7434 6552 88% 0.06K 118 63 472K anon_vma 6528 6528 100% 0.62K 1088 6 4352K proc_inode_cache 3312 2330 70% 0.25K 207 16 828K filp 2490 2458 98% 0.05K 30 83 120K ftrace_event_field 2294 2207 96% 0.12K 74 31 296K kmalloc-128 1596 1440 90% 0.19K 76 21 304K kmalloc-192 1568 1476 94% 0.07K 28 56 112K Acpi-Operand 1112 1068 96% 1.00K 278 4 1112K kmalloc-1024 1104 1076 97% 0.09K 24 46 96K ftrace_event_file 882 518 58% 0.19K 42 21 168K cred_jar 880 644 73% 0.25K 55 16 220K skbuff_head_cache 828 802 96% 0.65K 138 6 552K shmem_inode_cache 648 552 85% 0.11K 18 36 72K jbd2_journal_head 608 523 86% 0.25K 38 16 152K kmalloc-256 8 slabtop
  12. 9 Q: How much memory is our application using?

  13. 10

  14. Processes 11

  15. 12 Processes

  16. 12 ➡ Completely isolated from each other. Processes

  17. 12 ➡ Completely isolated from each other. ➡ Act like

    they own the place. Processes
  18. 12 ➡ Completely isolated from each other. ➡ Act like

    they own the place. ➡ Must ask permission for pretty much everything. Processes
  19. 13 Operating system (kernel) Process 1 Process 2 Process 3

    Process 4 Network Disk I/O Screen
  20. 14

  21. ➡ Every process can access up to 4 GB of

    memory* 14
  22. ➡ Every process can access up to 4 GB of

    memory* ➡ Even if your computer does not have 4GB of memory. 14
  23. ➡ Every process can access up to 4 GB of

    memory* ➡ Even if your computer does not have 4GB of memory. ➡ Even if your computer does have MORE than 4GB of memory. 14
  24. ➡ On 64bit machines: ➡ theoretically: 16 exabytes (in relation:

    size of the internet in 2013 was estimated 672 exabytes) ➡ But most often, only between 8-128TB are used. 15
  25. 16 Physical Memory

  26. 16 Physical Memory Virtual Memory

  27. 17

  28. 17 g 3 z x

  29. 17

  30. 18 0x00000000 0x00010000 0xC0000000 0xFFFFFFFF 1 GB 3 GB

  31. 18 0x00000000 0x00010000 0xC0000000 0xFFFFFFFF 1 GB 3 GB

  32. 18 0x00000000 0x00010000 0xC0000000 0xFFFFFFFF 1 GB 3 GB program

    + data
  33. 18 0x00000000 0x00010000 0xC0000000 0xFFFFFFFF 1 GB 3 GB program

    + data shared
  34. 18 0x00000000 0x00010000 0xC0000000 0xFFFFFFFF 1 GB 3 GB program

    + data stack shared
  35. 18 0x00000000 0x00010000 0xC0000000 0xFFFFFFFF 1 GB 3 GB program

    + data stack shared
  36. 19 4 kb 4 kb 4 kb 4 kb 4

    kb 4 kb 4 kb 0x12340000 0x12341000 0x12342000 0x12343000 0x12344000 0x12345000 0x12346000
  37. 20

  38. 21

  39. ➡ Every process gets its own page table. 21

  40. ➡ Every process gets its own page table. ➡ Only

    pages that are actually used are filled! 21
  41. ➡ Every process gets its own page table. ➡ Only

    pages that are actually used are filled! ➡ If all pages are filled (ie: 4GB is mapped), the page table would be 4MB in size. 21
  42. 22 0x12340000 0x00001000 0x12341000 0x00522000 0x12342000 0x00852000 0x12346000 0x00633000 Virt

    Phys
  43. ➡ Every virtual address that is used MUST be converted

    to an actual physical address through the page tables. ➡ Caching in CPU via the Translation Lookaside Buffer (TLB) 23
  44. 24 1c 1b 1a Physical Virtual

  45. 24 1c 1b 1a 1b 1a 1c Physical Virtual

  46. 25 1b 1c 1b 1a 1a 2c 2b 2a 2a

    2b 2c 1c Physical Virtual Virtual
  47. 1b 26 1c 1b 1a 1a 2c 2b 2a 2a

    2b 2c 3c 3b 3a 3a 3b 3c 1c Physical Virtual Virtual
  48. 1b 26 1c 1b 1a 1a 2c 2b 2a 2a

    2b 2c 3c 3b 3a 3a 3b 3c 4c 4b 4a 1c Physical Virtual Virtual
  49. 27 Virtual Virtual 1b 1a 2b 2c 3a 3b 3c

    2a 1c Physical 1c 1b 1a 2c 2b 2a 3c 3b 3a 4c 4b 4a * *
  50. 27 Virtual Virtual Swap 1b 1a 2b 2c 3a 3b

    3c 2a 1c Physical 1c 1b 1a 2c 2b 2a 3c 3b 3a 4c 4b 4a * *
  51. 27 Virtual Virtual Swap 1b 1a 2b 2c 3a 3b

    3c Physical 2a 1c 1c 1b 1a 2c 2b 2a 3c 3b 3a 4c 4b 4a * *
  52. 27 Virtual Virtual Swap 1b 1a 2b 2c 3a 3b

    3c Physical 4c 4a 4b 2a 1c 1c 1b 1a 2c 2b 2a 3c 3b 3a 4c 4b 4a * *
  53. ➡ CPU tells OS when a page is not loaded

    in memory (Page fault). ➡ OS loads page from SWAP. ➡ OS returns control back. ➡ Process is - NEVER - aware of this. 28 SWAP
  54. Quick recap ➡ Every process can use up to 4GB.

    ➡ Every process gets its own page table. ➡ Every process starts with the smallest possible page table. ➡ Pages can be swapped in/out memory by CPU/OS, unaware by the process. 29
  55. 30 What happens when a process wants (more) memory?

  56. 31 0x00000000 0x00010000 0xC0000000 0xFFFFFFFF 1 GB 3 GB program

    + data stack shared
  57. 31 0x00000000 0x00010000 0xC0000000 0xFFFFFFFF 1 GB 3 GB program

    + data stack shared
  58. Ask the OS: (s)brk() or mmap() 32

  59. (s)brk() changes the data segment size 33

  60. 34

  61. 34 sbrk(10000)

  62. 34 Heap sbrk(10000)

  63. 35

  64. ➡ sbrk() does not ALLOCATE (phys) memory. 35

  65. ➡ sbrk() does not ALLOCATE (phys) memory. ➡ sbrk() creates

    table entries in the page table. 35
  66. ➡ sbrk() does not ALLOCATE (phys) memory. ➡ sbrk() creates

    table entries in the page table. ➡ Physical memory usage stays the same. 35
  67. ➡ sbrk() does not ALLOCATE (phys) memory. ➡ sbrk() creates

    table entries in the page table. ➡ Physical memory usage stays the same. ➡ Virtual memory usage goes up. 35
  68. 36 #include <stdio.h> #include <stdlib.h> void main(void) { sbrk(1024 *

    1024 * 1024); }
  69. 36 #include <stdio.h> #include <stdlib.h> void main(void) { sbrk(1024 *

    1024 * 1024); } top - 11:11:28 up 8 min, 2 users, load average: 0.01, 0.01, 0.00 Tasks: 141 total, 1 running, 140 sleeping, 0 stopped, 0 zombie Cpu(s): 0.0%us, 0.9%sy, 0.0%ni, 99.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 3922404k total, 492688k used, 3429716k free, 81944k buffers Swap: 1675260k total, 0k used, 1675260k free, 171296k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 2132 jthijsse 20 0 1027m 400 324 S 0.0 0.0 0:00.00 memory 1669 jthijsse 20 0 128m 5896 2064 S 0.0 0.2 0:00.83 zsh 1871 jthijsse 20 0 125m 5220 1860 S 0.0 0.1 0:00.18 zsh 1668 jthijsse 20 0 95844 1740 800 S 0.0 0.0 0:00.38 sshd 1870 jthijsse 20 0 95844 1736 796 S 0.0 0.0 0:00.21 sshd 2143 jthijsse 20 0 15028 1328 984 R 6.9 0.0 0:00.09 top
  70. ➡ Only when we access the virtual memory, actual memory

    usage goes up. ➡ Only pages that are accessed will be created/loaded into physical memory. 37
  71. ➡ Allocating 1GB of memory is cheap/fast. ➡ Iterating 1GB

    of memory is not. 38
  72. 39 #include <stdio.h> #include <stdlib.h> void main(void) { int j

    = 1024 * 1024 * 1024; char *a = malloc(j); for (int i=0; i!=j; i++) { a[i] = 1; } }
  73. 39 #include <stdio.h> #include <stdlib.h> void main(void) { int j

    = 1024 * 1024 * 1024; char *a = malloc(j); for (int i=0; i!=j; i++) { a[i] = 1; } } top - 11:09:49 up 7 min, 2 users, load average: 0.07, 0.02, 0.00 Tasks: 141 total, 1 running, 140 sleeping, 0 stopped, 0 zombie Cpu(s): 0.0%us, 0.2%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 3922404k total, 1543680k used, 2378724k free, 81940k buffers Swap: 1675260k total, 0k used, 1675260k free, 171264k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 2095 jthijsse 20 0 1027m 1.0g 352 S 0.0 26.7 0:03.46 memory2 1669 jthijsse 20 0 128m 5896 2064 S 0.0 0.2 0:00.83 zsh 1871 jthijsse 20 0 125m 5220 1860 S 0.0 0.1 0:00.15 zsh 1668 jthijsse 20 0 95844 1740 800 S 0.0 0.0 0:00.38 sshd 1870 jthijsse 20 0 95844 1736 796 S 0.0 0.0 0:00.17 sshd 2059 jthijsse 20 0 15028 1332 992 R 0.0 0.0 0:00.69 top
  74. ➡ mmap() maps files into memory. ➡ Lazy-load. Only creates

    virtual pages, loads parts into physical memory and connects when needed. ➡ mmap() can also be used to allocate memory (without connecting to files) 40
  75. 41

  76. 41

  77. 41 mmap()ed

  78. 42

  79. a = "Hello World" if (a == "foobar") { //

    Do something } 43 [root@localhost ~]# pmap -x 1271 1271: php-fpm: master process (/etc/php-fpm.conf) Address Kbytes RSS Dirty Mode Mapping 001ee000 248 8 0 r-x-- libgssapi_krb5.so.2.2 0022c000 4 4 4 r---- libgssapi_krb5.so.2.2 0022d000 4 4 4 rw--- libgssapi_krb5.so.2.2 0022f000 28 4 0 r-x-- libcrypt-2.12.so 00236000 4 4 4 r---- libcrypt-2.12.so 00237000 4 4 4 rw--- libcrypt-2.12.so .... 08048000 3400 204 0 r-x-- php-fpm 0839a000 328 140 20 rw--- php-fpm 083ec000 96 32 32 rw--- [ anon ] 092b4000 1316 1176 1176 rw--- [ anon ] ... af483000 4 4 4 rw-s- zero (deleted) af484000 28 0 0 r--s- gconv-modules.cache af48b000 131072 0 0 rw-s- zero (deleted) b748b000 160 4 4 rw--- [ anon ] b74b3000 2048 8 0 r---- locale-archive b76b3000 1312 124 124 rw--- [ anon ] b77fb000 4 4 4 rw-s- zero (deleted) b77fc000 4 4 4 rw-s- zero (deleted) b77fd000 4 4 4 rw-s- zero (deleted) b77fe000 4 4 4 rw-s- zero (deleted) b77ff000 4 4 4 rw--- [ anon ] bf876000 84 48 48 rw--- [ stack ] -------- ------- ------- ------- ------- total kB 155544 - - -
  80. 44

  81. 45 Process 2 Process 1 Process 3

  82. 46 48 1c 1b 1a 2c 2b 2a Physical Process

    2 Process 1
  83. 46 48 1c 1b 1a 2c 2b 2a a b

    c Physical Process 2 Process 1
  84. 46 48 1c 1b 1a 2c 2b 2a a b

    c Physical Process 2 Process 1
  85. 47 fork()

  86. 48 Process 1

  87. 48 Process 1 fork() =>

  88. 48 Process 1 Process 2 fork() =>

  89. 49 1c 1b 1a 1'c 1'b 1'a a b c

    Physical Virtual Virtual fork() =>
  90. 50 1c 1b 1a 1'c 2b 1'a 1a 1b 1c

    Physical Virtual Virtual fork() => 2b
  91. 51

  92. 52 ➡ Don't worry about high virtual memory usage. ➡

    Resident memory set is key. ➡ When fork()'ing, memory usage (even RSS) becomes hard to manage / detect. ➡ Don't swap! Recap
  93. ➡ https://techtalk.intersec.com/2013/07/memory-part-2- understanding-process-memory/ ➡ http://locklessinc.com/articles/memory_usage/ ➡ http://rhaas.blogspot.nl/2012/01/linux-memory- reporting.html ➡ http://people.freebsd.org/~lstewart

    ➡ http://deathbytape.com/post/110371790629/intro- virtual-memoryarticles/cpumemory.pdf ➡ http://nikic.github.com/2011/12/12/How-big-are-PHP- arrays-really-Hint-BIG.html 53 303 See Other
  94. http://farm1.static.flickr.com/73/163450213_18478d3aa6_d.jpg 54

  95. 55 Find me on twitter: @jaytaph Find me for development

    and training: www.noxlogic.nl Find me on email: jthijssen@noxlogic.nl Find me for blogs: www.adayinthelifeof.nl