Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Say "Hi!" to Spring AI and LangChain4j - Seamle...

Avatar for Piotr Łaskawiec Piotr Łaskawiec
October 23, 2025
2

Say "Hi!" to Spring AI and LangChain4j - Seamless Support for GenAI in Your System - JDD

Generative AI is taking the world by storm. While some use cases may seem questionable, many systems can genuinely benefit from GenAI. While most attention still focuses on advancing GenAI capabilities, integration with new and existing enterprise-grade systems often gets overlooked. This talk presents a software architect's perspective on incorporating various GenAI models into your applications. We'll examine key quality attributes (such as portability, maintainability, security, and extensibility) while comparing two popular JVM solutions - Spring AI and LangChain4j. All of that will be illustrated with real-life stories and examples.

Avatar for Piotr Łaskawiec

Piotr Łaskawiec

October 23, 2025
Tweet

Transcript

  1. „Describe me in 5 concise bullet points” Prompt: • Pragmatic

    Software Architect • Creating software for nearly 20 years • Founder of Comsenity • Helping companies to deliver real value • Occasional speaker and trainer Gener a ted by AI @piotrl a sk a wiec @piotrl a sk a wiec.bsky.soci a l
  2. *This chart is de fi nitely not scienti fi c…

    Hype over time Hype Time NoSQL Microservices Blockchain AI Tool/Language XYZ Event Horizon
  3. Under 1 minute… GenAI/LLMs • Cre a tes new content

    - text, im a ges, code, a udio, video - b a sed on p a tterns le a rned from l a rge d a t a sets. • LLMs a re tr a ined speci f ic a lly on l a ngu a ge d a t a to underst a nd a nd gener a te hum a n- like text. • LLMs use billions of p a r a meters to predict a nd gener a te coherent, context- a w a re text outputs. • Tr a nsformer Architecture (token prediction). Arti f ici a l Inteligence Arti f ici a l Intelligence M a chine Le a rning Deep Le a rning Gener a tive AI Im a ge/Video LLM
  4. Use cases • Summ a rizers • Assist a nts

    • Customer support • Cl a ssi f ic a tion • Customer sentiment a n a lysis • Converting unstructured to structured d a t a • Tr a nsl a tors
  5. Completion REST API Prompt Roles User/System Not st a nd

    a rdized St a teless Ch a t Memory Structured Output Pre-tr a ined System Inter a ctions Context D a t a V a rious Input Types V a rious Output Types Request/Response Stre a ming Fr a mework Integr a tion Observ a bility Test a bility
  6. Common parts • Simil a r concepts a nd a

    bstr a ctions • Multiple LLM providers supported • Support for multimod a lity • Prompt templ a tes • Response stre a ming • Structured outputs • Ch a t memory • RAG (Retriev a l-Augmented-Gener a tion) • Multiple Vector Stores supported
  7. • Deep integr a tion with Spring ecosystem • Out-of-the-box

    support for building MCP servers LangChain4j • Spring Boot, Qu a rkus, Helidon integr a tions • Kotlin extensions • Gu a rdr a ils • Agents a nd Agentic AI servies, A2A support • E a sy RAG • Qu a rkus a dd-ons: • Tools execution model • Dev UI integr a tion
  8. Context is everything Prompt Stu ff ing RAG Tool C

    a lling Embeddings Vector Stores Ingestion
  9. Tool Calling Applic a tion bound a ry Service A

    Service B Extern a l Model Extern a l Service D a t a source
  10. Tool Calling Applic a tion bound a ry Service A

    Service B Extern a l Model Extern a l Service D a t a source
  11. Model Context Protocol • C a p a bilities •

    Resources - generic text/bin a ry d a t a (d a t a b a se records, f ile content, API responses etc.) • Tools - execut a ble function a lities • Prompts - reus a ble templ a tes for users • Resources vs Tools • S a mpling • Tr a nsports • Stdio • HTTP/SSE • D a t a form a t - JSON-RPC 2.0
  12. Let LLM do the job Agentic AI • AI Agent

    - softw a re system th a t use AI to pursue go a ls a nd complete t a sks on beh a lf of users. • Agentic System Architectures: • Work f low - LLMs a nd Tools a re progr a mm a tic a lly orchestr a ted (well-de f ined control f low) • P a tterns: sequenti a l, loop, p a r a llel, condition a l • Agents - LLMs fully control the f low • LLM is responsible for choosing how to solve a given problem using a v a il a ble tools. • There a re no gu a r a ntees reg a rding the control f low. • Tools c a n be c a lled 0-N times.
  13. Security • Att a cks • Prompt Injection • Prompt

    Le a king • J a ilbre a king • DoS • Defense is in your h a nds • Gu a rdr a ils • Supported by L a ngCh a in4j Qu a rkus integr a tion
  14. Performance • Perform a nce-Oriented Prompt Engineering (sic!) • SLAs

    in non-deterministic world m a y be h a rd to re a ch • Lot of moving p a rts
  15. Testability • Simple checks • All required inform a tion

    provided in the a nswer • Proper tools were invoked • Token counts • How to test something th a t is inherently not deterministic? • M a ke it more deterministic • Fight f ire with f ire - AI Model Ev a lu a tion
  16. Correctness • H a llucin a tions • Writing a

    good prompt is a n a rt • Provide qu a lity context to the model • Retries • Rollb a cks
  17. Observability • Support for metrics a nd tr a ces

    • Follows OTel „Sem a ntic conventions for gener a tive AI systems” (still in development)