Upgrade to Pro — share decks privately, control downloads, hide ads and more …

On Device AI with Google AI Edge

Avatar for Darshan Parikh Darshan Parikh
October 21, 2024
13

On Device AI with Google AI Edge

Avatar for Darshan Parikh

Darshan Parikh

October 21, 2024
Tweet

Transcript

  1. Agenda • On-device AI • Google AI Edge ◦ Gemini

    Nano ◦ ML Kit ◦ MediaPipe Solutions • Live demo ◦ MediaPipe Tasks ◦ MediaPipe Model Maker • Summary
  2. On-device AI • AI processing and computations performed on a

    device • For ex, smartphone, wearable, IoT device etc. • Does not rely on cloud servers
  3. On-device AI • Advantages ◦ Low latency ◦ Privacy ◦

    Offline functionality ◦ Reduced reliance on cloud infrastructure • Challenges ◦ Limited computational power compared to cloud ◦ Model size limitations
  4. Google AI Edge • Platform that enables developers to build

    and deploy AI models directly on devices • On-device AI for mobile, web, and embedded applications
  5. • Android’s foundation model for building on-device GenAI applications •

    Integrated to the Android OS via AICore in Android 14+ • Google AI Edge SDK provides access to APIs • Application examples such as, ◦ Speech transcription ◦ Smart reply ◦ Text summarization • Available on Pixel 8 series and Samsung S24 series 1.0 Nano
  6. • Focused on on-device machine learning tasks • Image recognition,

    Text recognition, Face detection etc. • Designed for real-time applications with limited computational resources • ML Kit is not designed for GenAI tasks • Android & iOS
  7. // Vision APIs implementation("com.google.mlkit:image-labeling:version") implementation("com.google.mlkit:object-detection:version") implementation("com.google.mlkit:pose-detection:version") implementation("com.google.mlkit:face-mesh-detection:version") implementation("com.google.mlkit:barcode-scanning:version") implementation("com.google.mlkit:text-recognition:version") //

    Natural Language APIs implementation("com.google.mlkit:mlkit-language-id:version") implementation("com.google.mlkit:translate:version") implementation("com.google.mlkit:entity-extraction:version") implementation("com.google.mlkit:mlkit-smart-reply:version")
  8. • MediaPipe Solutions provides a suite of libraries and tools

    • Apply AI and ML techniques in apps • Initially designed for real-time processing of image and video data • Expanded capabilities to include generative AI functions • Android, Python, Web, iOS (coming soon)
  9. MediaPipe LLM Inference • Available on-device LLMs ◦ Gemma 2B

    ◦ Gemma 7B ◦ Falcon 1B ◦ StableLM 3B ◦ Phi-2 (2.7B)
  10. MediaPipe LLM Inference process • Download the model from HuggingFace

    • Convert the model to MediaPipe-friendly format • Save the model to /data/local/tmp/llm/ directory on device • Run the app
  11. Result • Download the model from HuggingFace • Convert the

    model to MediaPipe-friendly format • Save the model to /data/local/tmp/llm/ directory on device • Run the app
  12. • Low-level component to build efficient on-device machine learning pipelines,

    similar to the premade MediaPipe Solutions • For ex, Augmented Reality application ◦ Face filters ◦ Hand tracking ◦ Object recognition MediaPipe Framework