Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
大規模Webサービス入門 7回目 / Introduction to large scale ...
Search
muttan
August 25, 2017
0
110
大規模Webサービス入門 7回目 / Introduction to large scale web service 7
muttan
August 25, 2017
Tweet
Share
More Decks by muttan
See All by muttan
さわやか待ち時間LINE botを作った話 / Sawayaka LINE bot
bath_poo_
0
100
コンテナ開発入門 1回目/Introduction to Container Development 1
bath_poo_
0
140
ISUCONってなんだ / What is ISUCON
bath_poo_
0
320
Web技術の基本 8回目 / Introduction to Web technologies 8th class
bath_poo_
0
170
Web技術の基本 7回目 / Introduction to Web technologies 7th class
bath_poo_
0
150
Web技術の基本 6回目 / Introduction to Web technologies 6th class
bath_poo_
1
240
Web技術の基本 5回目 / Introduction to Web technologies 5th class
bath_poo_
0
120
Web技術の基本 4回目 / Introduction to Web technologies 4th class
bath_poo_
0
200
Web技術の基本 3回目 / Introduction to Web technologies 3rd class
bath_poo_
0
240
Featured
See All Featured
Docker and Python
trallard
43
3.2k
A designer walks into a library…
pauljervisheath
205
24k
Building an army of robots
kneath
302
45k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.5k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.8k
Raft: Consensus for Rubyists
vanstee
137
6.7k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
19
2.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
870
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
A Philosophy of Restraint
colly
203
16k
VelocityConf: Rendering Performance Case Studies
addyosmani
327
24k
Transcript
େنαʔϏεٕज़ೖ ୈ7ճ ISUCONରࡦษڧձ 2017/8/25
ୈ7ճ ΞϧΰϦζϜͷ࣮༻Խ - ۙͳྫͰݟΔཧɾݚڀͷ࣮ફೖ-
ΞϧΰϦζϜɾσʔλߏͷબ • େنͳΣϒαʔϏεʹ͓͍ͯ, ۪ʹσʔ λΛૢ࡞ɾ୳ࡧ͢Δͱܭࢉྔരൃ͕ى͜Δ.
ΞϧΰϦζϜɾσʔλߏͷબ ʮϑΧγΪͷ͑ํʯ͓Ͷ͑͞Μͱ͍ͬ͠ΐʂΈΜͳͰ͑ͯΈΑ͏ʂ https://www.youtube.com/watch?v=Q4gTV4r0zRs
ΞϧΰϦζϜɾσʔλߏͷબ • దͳΞϧΰϦζϜΛ༻͍Δ͜ͱͰ, େ෯ʹܭ ࢉྔΛݮΒ͢͜ͱ͕ग़དྷΔ.
None
ΞϧΰϦζϜɾσʔλߏͷબ • ࠓճֶͿ͜ͱ ‣ ΞϧΰϦζϜͷॏཁ͞ - σʔλ͕େ͖͘ͳΕͳΔ΄ͲॏཁʹͳΔ ‣ ΞϧΰϦζϜબఆεςοϓ -
Φʔμʔه๏ - ࣮ࡍʹΘΕΔ·Ͱͷεςοϓ
Lesson 19 ΞϧΰϦζϜͱධՁ
σʔλͷنͱܭࢉྔͷҧ͍ • σʔλ͕େ͖͘ͳΕͳΔ΄Ͳ, ΞϧΰϦζϜ σʔλߏͷબ͕ͱͯ͠ݱΕΔ. αʔνํ๏ Φʔμʔ ઢܗ୳ࡧ ೋ୳ࡧ
σʔλͷنͱܭࢉྔͷҧ͍ • n=1000ͷͱ͖ͷܭࢉྔͷҧ͍ αʔνํ๏ ܭࢉྔ ઢܗ୳ࡧ ೋ୳ࡧ ͓Αͦ
σʔλͷنͱܭࢉྔͷҧ͍ • n=1,000,000ͷͱ͖ αʔνํ๏ ܭࢉྔ ઢܗ୳ࡧ ೋ୳ࡧ
͓Αͦ O(log2(n))σʔλͷ૿Ճʹڧ͍
σʔλͷنͱܭࢉྔͷҧ͍ • σʔλྔ͕গͳ͍࣌, ઢܗ୳ࡧͰྑ͍. • ͔͠͠, ݱ࣮ͷେنͳWebαʔϏεͰ, σʔ λྔ͕গͳ͍ͱ͍͏͜ͱߟ͑ʹ͍͘ •
ઌఔͷΑ͏ʹ, σʔλ͕100ສ݅, 1000ສ݅ͱ૿Ճ ͍ͯ͘͠ͱ, σʔλͷ୳ࡧ͕ϘτϧωοΫͱͳͬͯ ͘Δ.ɹ→ ͳΔ͘ݮΒ͍ͨ͠
ΞϧΰϦζϜͱʁ • ͋Δ·ͨͷू߹Λೖྗ͠, ͋Δ·ͨͷ ू߹Λग़ྗ͢Δ, ໌֬ʹఆٛ͞Εͨܭࢉखଓ͖ͷ͜ ͱ. • ࣮ࡍʹڱٛͷҙຯͰͷΞϧΰϦζϜ, ٛͷҙຯ
ͰͷΞϧΰϦζϜ͕ଘࡏ͢Δ. • ຊ࣭తͳ͜ͱͰͳ͍ͷͰলུ
ΞϧΰϦζϜΛֶͿҙٛ • ܭࢉࢿݯ༗ݶͰ͋Δ ‣ ༗ݶͷϦιʔεͰ͍͔ʹޮΑ͘ॲཧ͢Δ͔ • ΞϧΰϦζϜΤϯδχΞͷʮڞ௨ݴޠʯ ‣ ΞϧΰϦζϜΛ͍ͬͯΔલఏͰΛ͢Δ •
͕ࣝ͋Ε৽͍͠ʹରॲͰ͖Δ
ΞϧΰϦζϜͷධՁ • ΞϧΰϦζϜΛධՁ͢ΔͨΊʹ, Φʔμʔදه ͱ͍͏ͷ͕ΘΕΔ. • ೖྗͷαΠζΛnͱͨ͠ͱ͖ʹ, Ͳͷఔͷܭ ࢉྔ͕ඞཁʹͳΔ͔Λද͢ͷ. •
O(n)ͱ͍͏දهΛ͢Δ.
ΞϧΰϦζϜͷධՁ • ྫ͑nͷେ͖͞ʹ͔͔ΘΒͣఆ࣌ؒͰॲཧ ͕ऴΘΔ߹ʢϋογϡͳͲʣ ɹ→ O(1)ͱදه͢Δ • ೖྗαΠζnʹΑͬͯ୳ࡧ͕࣌ؒมԽ͢Δͷ ʢઢܗ୳ࡧͳͲʣ ɹ→
O(n), O(nlogn), O(logn), etc…
ΞϧΰϦζϜͷධՁ • ΦʔμʔදهͰҎԼͷΑ͏ͳܭࢉྔ͕සग़͢Δ. • O(nlogn)͙Β͍·Ͱ͍͍͕, ͦΕҎ্ʹͳΔͱ ٸܹʹܭࢉྔ͕૿Ճ͢Δ. ‣ ࣮༻ʹת͑ΔͷO(nlogn)͙Β͍·Ͱͱߟ͑Δ.
ΞϧΰϦζϜͷධՁ • ΞϧΰϦζϜʹΑͬͯ, O(n^2)ͩͱͯ͠ߴͰ ͋Δͱݴ͑Δ. • ݁ہͷͱ͜Ζ, ॲཧରͷαΠζ(nͷαΠζ)ʹΑͬ ͯߴ͔Ͳ͏͔ܾ·ͬͯ͘Δ. •
ۭؒ༻ྔʢϝϞϦʣΛ͡Δͱ͖ʹΦʔμʔ දهΘΕ͍ͯΔ.
ΞϧΰϦζϜͱσʔλߏ • σʔλߏ, ʮରͱ͢ΔσʔλΛอ࣋͢Δ·ͨ දݱ͢ΔͨΊͷߏʯ ‣ ྻߏ͕Θ͔Γ͍͢ྫ • ΞϧΰϦζϜʹదͨ͠σʔλߏΛ͏͜ͱͰ, ΑΓ
ޮతʹॲཧ͢Δ͜ͱ͕ग़དྷΔ. • σʔλϕʔεͰB+Λ͍ͬͯΔ.
ܭࢉྔͱఆ߲ • ΦʔμʔදهͰ, ఆ߲ແࢹ͞ΕΔ. ‣ ܭࢉίετ͕3nͷ߹, O(n) ‣ ܭࢉίετ͕2n^2ͷ߹, O(n^2)
• ؔݺͼग़͠, Λฦ͢, ifͰذఆ߲ѻ͍ ͞Ε͍ͯΔ.
ܭࢉྔͱఆ߲ • ΦʔμʔදهΞϧΰϦζϜͦͷͷΛධՁɾൺ ֱ͢Δࡍʹศར. • ࣮ࡍͷ, ଞͷܭࢉػతͳཁҼʹࠨӈ͞ΕΔ. ‣ ΩϟογϡʹࡌΓ͍͔͢Ͳ͏͔ ‣
ذ͕গͳ͍͔Ͳ͏͔
ܭࢉྔͱఆ߲ • ιʔτΞϧΰϦζϜͷԼݶO(nlogn)Ͱ͋Δ ͱҰൠతʹݴΘΕ͍ͯΔ. • ಉ͡ΞϧΰϦζϜͰ, ΫΠοΫιʔτ͕࠷ ૣ͍ͱݴΘΕ͍ͯΔ. ‣ ΩϟογϡʹࡌΓ͍ͨ͢Ί.
࠷దԽͷҙ • ࠷దԽΛߦͳ͏ࡍʹ, ఆഒΛվળ͢ΔΑΓ ΞϧΰϦζϜͦͷͷΛมߋ͠ܭࢉྔΛݮΒͤ ΔͷͳΒͦΕ͕ྑ͍. • O(n^2)ͷఆഒΛվળ͢ΔΑΓ, O(nlogn) ͷΞϧΰϦζϜ͕͋ΔͷͳΒͦͬͪΛ࠾༻͠
Α͏.
ΞϧΰϦζϜ׆༻ͷ࣮ࡍͷͱ͜Ζ • ཧ্ߴͳΞϧΰϦζϜΑΓ, ݹయతͳΞ ϧΰϦζϜͷ΄͏͕ૣ͍͜ͱ͋Δ. • Α͘ΒΕ͍ͯΔΞϧΰϦζϜΑΓ, φΠʔ ϒͳΞϧΰϦζϜͷ΄͏͕͍͍͜ͱ͋Δ.
αʔυύʔςΟʔͷ࣮Λར༻͢Δ • ఆ൪ͷΞϧΰϦζϜʹؔͯ͠, ୈࡾऀ͕ར༻͠ ͍͢Α͏ͳܗͰެ։͞Ε͍ͯΔ͜ͱ͕ଟ͍. • PerlͰ͍͏ͱ͜ΖͷCPAN • ͨͩ͠, ༷͕ࣗͨͪͷཧͱ͍͋ͬͯͳ͔ͬͨ
ΓΦʔόʔεϖοΫͳ߹ࣗͨͪͰ࣮͢Δ ඞཁ͋Δ͔.
Lesson 20 ͯͳμΠΞϦʔͷ ΩʔϫʔυϦϯΫ
ΩʔϫʔυϦϯΫͱʁ • ࣗಈతʹΩʔϫʔυͷϦϯΫΛੜ͢Δͭ ʢ5ճͷ༰Ͱग़͖ͯͨͷʣ Լઢ෦͕ϦϯΫ
αʔυύʔςΟʔͷ࣮Λར༻͢Δ • ೖྗ͞Εͨจষʹରͯ͠, 27ສ୯ޠೖ͍ͬͯΔࣙ ॻͱϚονϯά͢Δ. • ରՕॴΛHTMLͷΞϯΧʔλάʹஔ͖͑Δ࡞ ۀΛߦ͏. ͯͳμΠΞϦʔϒϩάͰ͢ <a
href=“…”>ͯͳμΠΞϦʔ</a><a href=“…”>ϒϩάͰ͢</a> ྫ
ॳͷ࣮ • ॳਖ਼نදݱΛͬͨnaive algorithmΛ࠾ ༻͍ͯͨ͠. ‣ ࣙॻதʹؚ·ΕΔશ୯ޠΛORͰܨ͛Δ ‣ (foo|bar|baz|hoge|fuga|…)
ਖ਼نදݱϚονϯάͰͷ • αʔϏε։࢝ޙ୯ޠ͕ͦΕ΄Ͳଟ͘ͳ ͍ͨΊ, DB͔ΒͦͷͰਖ਼نදݱΛੜ࣮͠ ݱ͍ͯͨ͠. • Ωʔϫʔυ͕૿Ճ͢Δͱਖ਼نදݱͷॲཧʹ࣌ ͕͔͔ؒͬͯ͘ΔͨΊ, ࣮༻ʹ͑ͳ͘ͳΔ.
ਖ਼نදݱϚονϯάͰͷ • 2ͭͷՕॴʹ͕͔͔࣌ؒΔ 1. ਖ਼نදݱΛίϯύΠϧ͢Δॲཧ • ࣄલʹ࡞ͬͯΩϟογϡ͓ͯ͘͠ 2. ਖ਼نදݱͰύλʔϯϚον͢Δॲཧ •
ղܾͰ͖ͣ…
ύλʔϯϚονͷ • ΩʔϫʔυϦϯΫͷੜʹ͕͔͔࣌ؒΔݪҼ , ਖ਼نදݱͷΞϧΰϦζϜ͕ݪҼ • ΦʔτϚτϯ͕༻͞Ε͍ͯΔ. • ଟ͘NFAʢඇܾఆੑ༗ݶΦʔτϚτϯʣ
ύλʔϯϚονͷ • (foo|bar|baz|…)ͱ͍͏ਖ਼نදݱ͕͋ͬͨͱ͖ foo | bar | baz | …
text : d(^_^o) ෆҰக ʁ
ύλʔϯϚονͷ • ୯७ʹઌ಄͔Βݟ͍ͯͬͯ, Ұக͢Δ͔͠ͳ͍ ͔Λݟ͍ͯ͘. ‣ ୯ޠ͕ଟ͘ͳΔ΄Ͳॲཧ͕͘ͳΔ ‣ ୯ޠ͕গͳ͚ΕͦΕͰಈ࡞͢Δ
ਖ਼نදݱˠTrie • ύλʔϯϚονͷܭࢉྔΛམͱͨ͢Ίʹਖ਼ن දݱ͔ΒTrie࣮ΛΓସ͑ͨ. • TireͬͯͳΜ͚ͩͬʁ
ʲ෮शʳTrieͱ • Ωʔू߹Λѻ͏ͨΊͷσʔλߏͷҰछ • ࠓճͷΑ͏ͳ୯ޠͷू߹ͱ͔ • ݕࡧαΠζ͕ͷେ͖͞Ͱͳ͘୯ޠͷ͞ ʹґଘ͢Δ • ऩ݅ʹґଘ͠ͳ͍
ʲ෮शʳTrieͱ t e a n o i n n w
e keys: tea, ten, to, i, in, inn, we
TrieߏͱύλʔϯϚον • TrieߏΛ͏ͱ, ਖ਼نදݱʹΑΔϚονΑΓܭࢉྔ Λݮ͢Δ͜ͱ͕Ͱ͖Δ. • ೖྗจॻΛTrieʹೖྗͯ͠ΤοδΛḷΓ, ऴ͕ݟͭ ͔Εଘࡏ͢Δ. •
ܭࢉྔͷαΠζ͕ೖྗͷ͞ʹґଘ͢Δ • ΦʔτϚτϯͬΆ͍
AC(Aho-Corasick)๏ • ࣙॻத͔ΒύλʔϯϚονϯάΛߴʹߦ͏ ख๏. ‣ ࣙॻαΠζʹґଘ͠ͳ͍ • ػձ͕͋ΕΓ͍͙ͨΒ͍ͷؾ࣋ͪ… • ຊ࣭ใͰͳͦ͞͏ͳͷͰεΩοϓ
ΩʔϫʔυϦϯΫ࣮ɺมભͱߟ • ڊେͳਖ਼نදݱˠAC๏ˠRegexp::Listͱม Խ͖ͯͨ͠. • ͲͷΑ͏ʹσʔλߏͱΞϧΰϦζϜΛબఆ ͍͖͔ͯ͘͠ʁ
ॳظஈ֊ • σʔλ͋·Γେ͖͘ͳ͘γϯϓϧͳ࣮ → γϯϓϧΏ͑গͳͯ͘ࡁΉ → ॊೈੑʹΜ࣮ͩ → ଞͷػೳͷ࣮࣌ؒΛׂ͘
ݱࡏ • σʔλ͕େ͖͘ͳΔ͜ͱͰ, େ෯ʹ࣮Λݟ ͢ඞཁ͕ग़͖ͯͨ. → γϯϓϧͳ࣮+ΩϟογϡͰճආෆՄೳ → ΞϧΰϦζϜΛධՁ͠, ܭࢉྔͷ؍͔Βߟ
͑Δඞཁ͕͋Δ
ߟ • ॳظஈ֊Ͱ, ࠷ద(Ͱ͋Δ͕ෳࡶ)ͳ࣮Λ༻ ͍Δ͜ͱ͕ਖ਼͍͠ͱݶΒͳ͍. ‣ γϯϓϧͳ࣮͕ڐ͞ΕΔ • େنʹͳͬͨͱ͖ʹඋ͑ͯ, ຊ࣭తͳղܾํ
๏Λ͓ͬͯ͘ඞཁ͋Δ.
Lesson 21 هࣄΧςΰϥΠζ
هࣄΧςΰϥΠζͱʁ • هࣄͷ༰ʹج͍ͮͯ, దͳΧςΰϦʹࣗಈ Ͱྨ͢Δ͜ͱ. • ϕΠδΞϯϑΟϧλΛͬͯΧςΰϦఆΛ ߦ͍ͬͯΔ.
ϕΠδΞϯϑΟϧλͱʁ • φΠʔϒϕΠζ(Naive Bayes)ͱ͍͏ΞϧΰϦζϜΛར༻ ͯ͠, ֬తʹͲͷδϟϯϧʹྨ͞ΕΔ͔ΛௐΔํ๏. • աڈͷྨใΛͬͯ, ݱࡏͷ(δϟϯϧ͕ະͷ)จॻ Λྨ͢Δ.
‣ ڭࢣ͋ΓֶशΛར༻͍ͯ͠Δ. ‣ ػցֶशɾύλʔϯೝࣝͷݚڀՌʹΑΔͷ
ϕΠδΞϯϑΟϧλͱʁ • ϕΠδΞϯϑΟϧλͷ֩ͱͳ͍ͬͯΔͷ, φΠʔ ϒϕΠζͱ͍͏ΞϧΰϦζϜ. ‣ ໊લ͔Β͔Δ௨Γ, ϕΠζͷఆཧΛϕʔεͱͨ͠ ΞϧΰϦζϜ. •
۩ମతͳ࣮ʹ౿Έࠐ·ͣ, ͲͷΑ͏ʹಈ͔͚ͩ͘ ղઆ͢Δ.
φΠʔϒϕΠζʹΑΔΧςΰϦਪఆ • ͋ΔจॻD͕༩͑ΒΕͨ࣌, ͦͷจॻ͕֬త ʹͲͷΧςΰϦCʹଐ͢Δͷ͕ͬͱΒ͍͠ ͔ΛٻΊΔ. • ͭ·Γ, จॻD͕༩͑ΒΕͨͱ͖ͷΧςΰϦC Ͱ͋Δ͖݅֬P(C|D)ΛٻΊΔ.
φΠʔϒϕΠζʹΑΔΧςΰϦਪఆ • P(C|D)Λܭࢉ͢Δͷ͍͠ ‣ ϕΠζͷఆཧΛ͏ͱܭࢉՄೳʹ • ϕΠζͷఆཧ P(D|C), P(C), P(D)ΛٻΊΔ.
φΠʔϒϕΠζʹΑΔΧςΰϦਪఆ • ࠓճඞཁͳͷ֬ͦͷͷΑΓ, ͲͷΧς ΰϦ͕ͬͱΒ͍͔͠ͱ͍͏͜ͱ • ઌ΄Ͳͷࣜʹ͓͍ͯ, จॻD͕ੜى͢Δ֬ P(D)ҰఆͰ͋Δ. ‣
P(D|C), P(C)ͷΈΘ͔Εྑ͍ʂ
φΠʔϒϕΠζʹΑΔΧςΰϦਪఆ • P(D|C), P(C)ͷΛֶशσʔλ͔Βࢉग़ͯ͠͠ ·͑ٻΊΔ͜ͱ͕Ͱ͖Δ. ‣ P(C)ͦͷΧςΰϦ͕ग़ݱ͢Δ֬ͳͷͰ, ྨ͞Εͨճ͚͓͚͍͍֮ͩ͑ͯ. ‣ P(D|C)ଟগͷ͕ཉ͍͠.
φΠʔϒϕΠζʹΑΔΧςΰϦਪఆ • P(D|C)Λܭࢉ͢Δ. • DΛҙͷ୯ޠW͕࿈ଓͯ͠ग़ݱ͢Δͱߟ͑ • ҎԼͷΑ͏ͳࣜͰۙࣅ͢Δ. • DΛ୯ޠʹׂ͠, ͦΕ͝ͱʹͦͷ୯ޠ͕Ͳ͜
ʹྨ͞Εͨͷ͔Λอଘ͓ͯ͘͠.
طଘͷख๏ΛҾ͖ग़͠ʹೖΕ͓ͯ͘ • େنσʔλʹର͢ΔΞϧΰϦζϜతͳΞϓϩʔ νΛֶͿʹͨͬͯ, طଘͷख๏Λ͋Δఔ ͍ͬͯΔ͜ͱ͕ॏཁ. ‣ σʔλϚΠχϯάɾύλʔϯೝࣝɾػցֶश ͷΑ͏ͳΞϧΰϦζϜ. ‣
ιʔτ୳ࡧɺѹॖ
طଘͷख๏ΛҾ͖ग़͠ʹೖΕ͓ͯ͘ • ྫɿTrieΩʔϫʔυϦϯΫʹԠ༻Ͱ͖Δ ɹɹϕΠδΞϯϑΟϧλΛࣗಈྨʹ → ͲͪΒΞϧΰϦζϜΛ͍ͬͯΔ͜ͱͰ, ׆༻ Ͱ͖Δ͜ͱ͕Θ͔Δ. • ΞϧΰϦζϜΛ࣮ޙՃ࡞ۀ͕͋Δ͜ͱͬ
͓͖ͯ͘.