Upgrade to Pro — share decks privately, control downloads, hide ads and more …

20200730_服薬アドヒアランスを評価する

d.sat0
October 24, 2021
350

 20200730_服薬アドヒアランスを評価する

d.sat0

October 24, 2021
Tweet

Transcript

  1. 服薬アドヒアランスを評価する
    2020.07.30
    d.sat0

    View full-size slide

  2. claimデータを使って
    服薬アドヒアランスを評価しよう

    View full-size slide

  3. 服薬アドヒアランスとは
    (medication adherence )

    View full-size slide

  4. コンプライアンス
    医療者が治療⽅針を決定し、患者がそれに従う⾏動をとること
    アドヒアランス
    患者が治療に対して積極的・前向きな考えをもつこと
    コンコーダンス
    患者の考えと医療者の考えが⼀致するように、両者の考えを尊重しあうこと
    Bond C.: Concordance: A partnership in medicine-taking(Concordance 1st Edition); Pharmaceutical Press, the publishing division of the Royal Pharmaceutical
    Society of Great Britain, London UK, 2004 /岩堀平 ⾨ ・ラリー・フラムソン( 訳 ):なぜ,患者は薬を 飲まないのか?,薬事⽇報社,東京 , 2010

    View full-size slide

  5. コンプライアンス
    患者が医師の処⽅に従い、薬をきちんと飲むこと
    アドヒアランス
    ⾃ら納得した上で薬をきちんと飲むこと
    コンコーダンス
    処⽅薬決定の段階から患者の意思が反映
    Bond C.: Concordance: A partnership in medicine-taking(Concordance 1st Edition); Pharmaceutical Press, the publishing division of the Royal Pharmaceutical
    Society of Great Britain, London UK, 2004 /岩堀平 ⾨ ・ラリー・フラムソン( 訳 ):なぜ,患者は薬を 飲まないのか?,薬事⽇報社,東京 , 2010

    View full-size slide

  6. 服薬アドヒアランス
    服薬コンプライアンス
    厳密には違うけど、今回は・・

    View full-size slide

  7. アドヒアランス悪い⼈
    そんなにいるの︖

    View full-size slide

  8. ADHERENCE TO LONG-TERM THERAPIES
    Evidence for action
    World Health Organization 2003
    慢性疾患に対する⻑期治療の良好な
    アドヒアランスは先進国で平均50%
    (発展途上国ではさらに低い)。
    これはpopulation healthにおいて
    ⼤きな問題だ︕
    “ADHERENCE TO LONG-TERM THERAPIES: EVIDENCE FOR ACTION”
    World Health Organization 2003

    View full-size slide

  9. ISPOR(International Society for Pharmacoeconomics and Outcomes Research)のHP
    https://www.ispor.org/member-groups/special-interest-groups/medication-adherence-and-persistence
    Special Interest GroupにMedication Adherenceあり

    View full-size slide

  10. なぜ患者は
    服薬を遵守しないのか

    View full-size slide

  11. Understanding Medication Compliance and Persistence from
    an Economics Perspective
    Rachel A. Elliott, BPharm, MRPharmS, PhD,1 Judith A. Shinogle, PhD, MSc,2 Pamela Peele, PhD,3
    Monali Bhosle, MS, PhD Candidate,4 Dyfrig A. Hughes, BPharm, MSc, PhD, MRPharmS5
    1School of Pharmacy,The University of Nottingham, University Park, Nottingham, UK; 2Department of Health Services Administration,
    University of Maryland, College Park, MD, USA; 3UPMC Health Plan, Pittsburgh, PA, USA; 4Division of Pharmacy Practice and Administration,
    Ohio State University, Columbus, OH, USA; 5Centre for Economics and Policy in Health, Bangor University, Bangor, UK
    ABSTRACT
    Objectives: An increased understanding of the reasons for
    noncompliance and lack of persistence with prescribed medi-
    cation is an important step to improve treatment effective-
    ness, and thus patient health. Explanations have been
    attempted from epidemiological, sociological, and psycho-
    logical perspectives. Economic models (utility maximization,
    time preferences, health capital, bilateral bargaining, stated
    preference, and prospect theory) may contribute to the under-
    standing of medication-taking behavior.
    Methods: Economic models are applied to medication non-
    compliance. Traditional consumer choice models under a
    budget constraint do apply to medication-taking behavior in
    that increased prices cause decreased utilization. Neverthe-
    less, empiric evidence suggests that budget constraints are not
    the only factor affecting consumer choice around medicines.
    Examination of time preference models suggests that the
    retical relevance, but has not been applied to compliance.
    Bilateral bargaining may present an alternative model to
    concordance of the patient–prescriber relationship, taking
    account of game-playing by either party. Nevertheless, there
    is limited empiric evidence to test its usefulness. Stated pref-
    erence methods have been applied most extensively to medi-
    cines use.
    Results: Evidence suggests that patients’ preferences are con-
    sistently affected by side effects, and that preferences change
    over time, with age and experience. Prospect theory attempts
    to explain how new information changes risk perceptions
    and associated behavior but has not been applied empirically
    to medication use.
    Conclusions: Economic models of behavior may contribute
    to the understanding of medication use, but more empiric
    work is needed to assess their applicability.
    Volume 11 • Number 4 • 2008
    V A L U E I N H E A L T H
    Table 1 The relationship of economic models to the various forms of (non)compliance
    Concordance Initial prescription fill Compliance Persistence
    Supply and demand
    Bilateral bargaining
    Human Capital Model
    Prospect theory
    Stated preference
    Time preference
    Applying Economic Models to Compliance 607
    ISPORのworking groupが⾏動経済学の観点で考察

    View full-size slide

  12. アドヒアランスは
    どのように評価するのか

    View full-size slide

  13. と、その前に⽤語の整理

    View full-size slide

  14. Raebel MA, Schmittdiel J, Karter AJ, Konieczny JL, Steiner JF. Standardizing terminology and definitions of medication
    adherence and persistence in research employing electronic databases. Med Care. 2013;51(8 Suppl 3):S11-S21.
    新しい処⽅がされてから、あらかじめ定義した
    期間までに薬を受けとるかどうか
    Primary Adherence
    初回調剤後、定められた⽇数以内に次の処⽅を
    充填したかどうか(いわゆるアドヒアランス)
    Secondary Adherence
    Adherence
    ※ 論⽂によって表現はいろいろ。

    View full-size slide

  15. ⽇本における処⽅箋の有効期限は
    発⾏⽇を含めて4⽇間(⽇曜⽇や祝⽇を含む)
    保険医療機関及び保険医療養担当規則(療担規則)第20条の3(⻭科の場合は第21条の3)
    【カナダ ブリティッシュコロンビア州】
    • ⼀般的な処⽅箋︓1年間
    • 特定の⿇薬処⽅箋︓5⽇間
    • 経⼝避妊薬︓2年間有効
    もちろん、国により異なります

    View full-size slide

  16. • Cramer JA, Roy A, Burrell A, et al. Medication compliance and persistence: terminology and definitions. Value
    Health. 2008;11(1):44-47. doi:10.1111/j.1524-4733.2007.00213.
    • Peterson AM, Nau DP, Cramer JA, Benner J, Gwadry-Sridhar F, Nichol M. A checklist for medication compliance and
    persistence studies using retrospective databases. Value Health. 2007;10(1):3-12.
    • Parker MM, Moffet HH, Adams A, Karter AJ. An algorithm to identify medication nonpersistence using electronic
    pharmacy databases. J Am Med Inform Assoc. 2015;22(5):957-961.
    “ the duration of time from initiation to
    discontinuation of therapy ”
    Medication persistence
    処⽅が終了してからどの程度間が空いたら中断したかという定義
    (permissible gap)をあらかじめ設定しなければならない。
    許容できる⽇数は病態によるので、⾃分で決める。
    ※ 58件の研究のレビューでは、 permissible gapは7⽇から180⽇までと⾮常にばらつきがあり、中央値は30⽇であった。

    View full-size slide

  17. アドヒアランスは
    どのように評価するのか

    View full-size slide

  18. Direct Measures
    Osterberg L, Blaschke T. Adherence to medication. N Engl J Med. 2005;353(5):487-497.
    drug therapy
    Table 1. Methods of Measuring Adherence.
    Test Advantages Disadvantages
    Direct methods
    Directly observed therapy Most accurate Patients can hide pills in the mouth
    and then discard them; impracti-
    cal for routine use
    Measurement of the level of medicine
    or metabolite in blood
    Objective Variations in metabolism and “white-
    coat adherence” can give a false
    impression of adherence; ex-
    pensive
    Measurement of the biologic marker
    in blood
    Objective; in clinical trials, can also
    be used to measure placebo
    Requires expensive quantitative as-
    says and collection of bodily fluids
    Indirect methods
    Patient questionnaires, patient
    self-reports
    Simple; inexpensive; the most useful
    method in the clinical setting
    Susceptible to error with increases in
    time between visits; results are
    easily distorted by the patient
    Pill counts Objective, quantifiable, and easy to
    perform
    Data easily altered by the patient
    (e.g., pill dumping)

    View full-size slide

  19. Indirect Measures
    Adherence to medication. N Engl J Med. 2005;353(5):487-497.
    40
    Measurement of the level of medicine
    or metabolite in blood
    Objective Variations in metabolism and “white-
    coat adherence” can give a false
    impression of adherence; ex-
    pensive
    Measurement of the biologic marker
    in blood
    Objective; in clinical trials, can also
    be used to measure placebo
    Requires expensive quantitative as-
    says and collection of bodily fluids
    Indirect methods
    Patient questionnaires, patient
    self-reports
    Simple; inexpensive; the most useful
    method in the clinical setting
    Susceptible to error with increases in
    time between visits; results are
    easily distorted by the patient
    Pill counts Objective, quantifiable, and easy to
    perform
    Data easily altered by the patient
    (e.g., pill dumping)
    Rates of prescription refills Objective; easy to obtain data A prescription refill is not equivalent
    to ingestion of medication; re-
    quires a closed pharmacy system
    Assessment of the patient’s clinical
    response
    Simple; generally easy to perform Factors other than medication adher-
    ence can affect clinical response
    Electronic medication monitors Precise; results are easily quantified;
    tracks patterns of taking
    medication
    Expensive; requires return visits and
    downloading data from medica-
    tion vials
    Measurement of physiologic markers
    (e.g., heart rate in patients taking
    beta-blockers)
    Often easy to perform Marker may be absent for other rea-
    sons (e.g., increased metabol-
    ism, poor absorption, lack of
    response)
    Patient diaries Help to correct for poor recall Easily altered by the patient
    When the patient is a child, question-
    naire for caregiver or teacher
    Simple; objective Susceptible to distortion
    drug therapy
    Table 1. Methods of Measuring Adherence.
    Test Advantages Disadvantages
    Direct methods
    Directly observed therapy Most accurate Patients can hide pills in the mouth
    and then discard them; impracti-
    cal for routine use
    Measurement of the level of medicine
    or metabolite in blood
    Objective Variations in metabolism and “white-
    coat adherence” can give a false
    impression of adherence; ex-
    pensive
    Measurement of the biologic marker
    in blood
    Objective; in clinical trials, can also
    be used to measure placebo
    Requires expensive quantitative as-
    says and collection of bodily fluids
    Indirect methods
    Patient questionnaires, patient
    self-reports
    Simple; inexpensive; the most useful
    method in the clinical setting
    Susceptible to error with increases in
    time between visits; results are
    easily distorted by the patient
    Pill counts Objective, quantifiable, and easy to
    perform
    Data easily altered by the patient
    (e.g., pill dumping)
    Rates of prescription refills Objective; easy to obtain data A prescription refill is not equivalent
    to ingestion of medication; re-
    quires a closed pharmacy system
    Assessment of the patient’s clinical
    response
    Simple; generally easy to perform Factors other than medication adher-
    ence can affect clinical response
    Electronic medication monitors Precise; results are easily quantified; Expensive; requires return visits and
    secondary databaseを利⽤

    View full-size slide

  20. secondary databaseでの
    アドヒアランス指標は︖

    View full-size slide

  21. Primary Adherence
    Secondary Adherence
    Based on Medication Possession
    • Medication Possession Ratio (MPR)
    • Proportion of Days Covered (PDC)
    Based on Medication Gaps
    • New Prescription Medication Gap (NPMG)
    • Continuous measure of Medication Gaps (CMG)
    調剤された処⽅数/観察期間中の新規処⽅数
    ※これ以外にもいくつかあります。

    View full-size slide

  22. Medication Possession Ratio (MPR)
    𝑴𝑷𝑹 =
    𝑻𝒐𝒕𝒂𝒍 𝑫𝒂𝒚!𝒔 𝑺𝒖𝒑𝒑𝒍𝒚 𝒊𝒏 𝑷𝒆𝒓𝒊𝒐𝒅
    𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑫𝒂𝒚𝒔 𝒊𝒏 𝑷𝒆𝒓𝒊𝒐𝒅
    観察期間中の処⽅⽇数合計
    観察期間(本来内服すべき⽇数)
    • 分⼦が処⽅⽇数の合計なので、早めに処⽅を受けた場合は100%
    を超える可能性あり。ただ、過剰使⽤を検出することはできる。
    • 複数の薬剤が処⽅されている場合、各薬剤の平均値で求めるので、
    MPRが⾼いものに引っ張られる。

    View full-size slide

  23. • 処⽅がカバーされていた⽇を分⼦にしているので、早めに処⽅さ
    れた場合、その分は別で考える。
    • 「カバーされているかどうか」を⾒るので100%は超えない。
    • 複数薬剤レジメンの場合、平均値ではなく、全ての薬剤がカバー
    されている⽇のみを有効と考える。
    Proportion of Days Covered (PDC)
    𝑷𝑫𝑪 =
    𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑫𝒂𝒚𝒔 𝒊𝒏 𝑷𝒆𝒓𝒊𝒐𝒅 ”𝒄𝒐𝒗𝒆𝒓𝒅”
    𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑫𝒂𝒚𝒔 𝒊𝒏 𝑷𝒆𝒓𝒊𝒐𝒅
    処⽅⽇数がカバーしていた期間
    観察期間(本来内服すべき⽇数)

    View full-size slide

  24. わかりにくいので
    図で考えてみます。

    View full-size slide

  25. Drug A=30⽇×8
    Drug B=30⽇×8
    →480⽇
    Drug AとDrug Bが処⽅されている
    =30⽇×6
    →180⽇
    Challenges of achieving effective glycemic control in type 2 diabetes Vol 39, No. 3, 2017,132 Medicographia A Servier publication
    1.0を超えた場合の取り
    扱いは⾃分で決める

    View full-size slide

  26. 観察終了をいつまでにするかは⾃分で決める。PDCもそれで変わってくる。
    最終処⽅⽇(この場合、day182)にするか、最終処⽅+処⽅⽇数にするかなど。
    カバーされているので、
    1.0は超えない
    重複している⽇(⿊)を不⾜している⽇(グレー)
    に前倒しできる
    “Medica(on Adherence: Defini(ons, Calcula(ons, and Sta(s(cal Modeling Strategies” By Joshua Joseph DeClercq Thesis SubmiCed to the Faculty of the Graduate
    School of Vanderbilt University in par(al fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biosta(s(cs August 10, 2018 Nashville, Tennessee

    View full-size slide

  27. Continuous measure of Medication Gaps (CMG)
    (観察期間総⽇数 - 累積処⽅⽇数)/ 観察期間総⽇数
    New Prescription Medication Gap (NPMG)
    • CMGの観察期間の考え⽅を拡張
    • 最初に処⽅されてから追跡調査が終了するまでの期間、
    別の治療法に切り替えるまでの期間、薬物療法が中⽌さ
    れるまでの期間
    Standardizing terminology and definitions of medication adherence and persistence in research employing electronic
    databases. Med Care. 2013;51(8 Suppl 3):S11-S21.

    View full-size slide

  28. 結局、どれがいいの︖

    View full-size slide

  29. Volume 10 • Number 1 • 2007
    V A L U E I N H E A L T H
    Blackwell Publishing IncMalden, USAVHEValue in Health1098-30152006 Blackwell Publishing2007101312Original ArticleChecklist for Medication Compliance StudiesPeterson et al.
    A Checklist for Medication Compliance and Persistence Studies
    Using Retrospective Databases
    Andrew M. Peterson, PharmD,1 David P. Nau, PhD,2 Joyce A. Cramer, BS,3 Josh Benner, PharmD, ScD,4
    Femida Gwadry-Sridhar, PhD, RPh, MSc, BSc,5 Michael Nichol, PhD6
    1University of the Sciences in Philadelphia, Philadelphia, PA, USA; 2University of Michigan, Ann Arbor, MI, USA; 3Yale University, West Haven, CT,
    USA; 4ValueMedics Research, LLC, Falls Church, VA, USA; 5McMaster University, London, ON, Canada; 6University of Southern California, Los
    Angeles, CA, USA
    ABSTRACT
    The increasing number of retrospective database studies related
    to medication compliance and persistence (C&P), and the inher-
    ent variability within each, has created a need for improvement
    in the quality and consistency of medication C&P research. This
    article stems from the International Society of Pharmacoeconom-
    ics and Outcomes Research (ISPOR) efforts to develop a check-
    list of items that should be either included, or at least considered,
    when a retrospective database analysis of medication compliance
    or persistence is undertaken. This consensus document outlines a
    systematic approach to designing or reviewing retrospective
    database studies of medication C&P. Included in this article are
    discussions on data sources, measures of C&P, results reporting,
    and even conflict of interests. If followed, this checklist should
    improve the consistency and quality of C&P analyses, which in
    turn will help providers and payers understand the impact of
    C&P on health outcomes.
    Keywords: compliance, guidelines, persistence, retrospective
    databases.
    ISPORのチェックリスト(2007年)には、
    どれがベストかという記述はない。
    「MPRやPDC、CMGなどがありますー」という書き⽅。
    Peterson AM, Nau DP, Cramer JA, Benner J, Gwadry-Sridhar F, Nichol M. A checklist for medica(on compliance and persistence studies using retrospec(ve
    databases. Value Health. 2007;10(1):3-12. doi:10.1111/j.1524-4733.2006.00139.x

    View full-size slide

  30. Proportion of Days Covered (PDC)
    as a Preferred Method of
    Measuring Medication Adherence
    By: David P. Nau, RPh, PhD, CPHQ
    Senior Director, Research & Performance Measurement
    Pharmacy Quality Alliance
    Source: http://www.pqaalliance.org/files/PDCvsMPRfinal.pdf
    Background
    The Pharmacy Quality Alliance (PQA) has developed, tested and endorsed numerous measures of
    medication-use quality. PQA members identified medication adherence as an important component
    of medication-use quality, and therefore PQA sought to endorse a standard method for calculation of
    medication adherence using data that would be widely available across prescription drug plans and
    pharmacies. After reviewing the extant literature and conducting tests of draft measure specifications,
    PQA chose to endorse the method known as Proportion of Days Covered (PDC).
    Review of Methods for Adherence Measurement
    N me o me hod ha e been ili ed o e ima e pa ien adhe ence to a medication regimen. Since
    PQA sought a method that could be derived from drug claims data, the review of methods focused on
    PQA(Pharmacy Quality Alliance)は
    PDCがアドヒアランス評価に良い指標と宣⾔した(2012年)
    80%以上をアドヒアランス良好(レトロウイルス治療薬は90%以上)

    View full-size slide

  31. Fact Sheet - 2020 Part C and D Star Ratings
    ※ MA-PD︓Medicare Advantage with prescription drug coverage
    Star Ratingでアドヒアランスも評価対象
    https://www.cms.gov/Medicare/Prescription-Drug-Coverage/PrescriptionDrugCovGenIn/Downloads/2020-Star-Ratings-Fact-Sheet-.pdf

    View full-size slide

  32. https://www.pharmacyquality.com/wp-content/uploads/2019/10/PQSMedicareStarRatingsUpdate2020.pdf
    PQS Summary of 2020 Medicare Part C and D Star Ratings Technical Notes
    PDCで評価している

    View full-size slide

  33. PDC が無難

    View full-size slide

  34. 他に注意する点は︖

    View full-size slide

  35. 薬を切り替えた場合
    確⽴した回答はない。
    同じ系統ならOKなのか(例︓スタチン間での変更)、ブランド変更時(先発
    →後発)はOKとするかなど、あらかじめ定義しておく。
    基本的に経⼝薬のみ
    ⾮経⼝薬や⽤量調整をする薬(例︓ワルファリン)では信頼性が落ちる。
    Coming full circle in the measurement of medication adherence: opportunities and implications for health care. Patient Prefer Adherence.
    2017;11:1009-1017. Published 2017 Jun 2.

    View full-size slide

  36. 基本的に慢性疾患を対象とする
    6ヶ⽉あるいは12ヶ⽉以上継続している薬で評価をする。
    Standardizing terminology and definitions of medication adherence and persistence in research employing electronic databases. Med Care. 2013;51(8
    Suppl 3):S11-S21.
    処⽅の出し⽅でアドヒアランスが変わることは理解しておく
    30⽇処⽅を受けた患者は90⽇処⽅を受けた患者よりもMPRが14%低い。
    Medication days' supply, adherence, wastage, and cost among chronic patients in Medicaid. Medicare Medicaid Res Rev. 2012;2(3):mmrr.002.03.a04.
    Published 2012 Sep 1
    claimデータなので必ずしも内服しているとは限らない

    View full-size slide

  37. STATAやR、SASでできる︖

    View full-size slide

  38. Paper 043-2007
    Using Arrays to Calculate Medication Utilization
    R. Scott Leslie, MedImpact Healthcare Systems, Inc., San Diego, CA
    ABSTRACT
    Assessing duration of medication therapy involves managing a data set with multiple observations per subject. This
    paper offers an innovative approach to calculating medication utilization as the proportion of days supplied over a
    specified time period. In this paper, the TRANSPOSE procedure, ARRAY statements, and DO loops are used to
    create multiple indicator variables, which are then used to calculate medication utilization. Variations of this code can
    integrate gaps and overlaps in therapy and can be used in calculating concomitant medication utilization.
    INTRODUCTION
    Many health outcomes related to pharmacy utilization involve length of therapy measurements. The purpose of this
    paper is to offer code that calculates a patient’s medication utilization as the proportion of days medication is supplied
    over a time period. This code is a helpful start for building code to calculate additional outcome measures such as
    compliance, adherence, and persistence.
    EXAMPLE 1: PROPORTION OF DAYS MEDICATION SUPPLIED
    This example uses a pharmacy claims data set that has multiple observations per patient. The steps below calculate
    the number of days a single drug is supplied over a 180-day study period, with the date of first claim as the first day of
    study period. A cut of the data set shows 3 claims for a patient.
    SAS Global Forum 2007 Coders’ Corner
    SASのcodeはあるそうです。が、私にはわかりません。
    https://support.sas.com/resources/papers/proceedings/proceedings/forum2007/043-2007.pdf

    View full-size slide

  39. R は AdhereR packageでできるそうです
    https://cran.r-project.org/web/packages/AdhereR/vignettes/AdhereR-overview.html
    CMA1-8 (continuous multiple interval measures
    of medication availability/gaps) をだせます。

    View full-size slide

  40. Study design and research setting
    We report data collected as part of a randomized clinical
    trial of members of the Northwest (KPNW) and Hawai‘i
    We compare eight alternative measures of adherence,
    which we label CMA1-CMA8 (Table 1). Some of these
    are classical CMA-type measures and some are derived
    Table 1 Summary of study measures
    Defn start of window to
    first dispensing
    last dispensing
    to end of window
    Timing^ Description of Measure
    CMA1 ignored ignored ignored (# days dispensed, excluding last) / (first to last dispensing)
    CMA2 ignored counted ignored (# days dispensed, including last) / (first dispensing to end of window)
    CMA3 ignored ignored ignored minimum (CMA1, 1)
    CMA4 ignored counted ignored minimum (CMA2, 1)
    CMA5 ignored ignored counted (# days theoretical use#) / (first to last dispensing)
    CMA6 ignored counted counted (# days theoretical use#) / (first dispensing to end of window)
    CMA7 counted counted counted (# days theoretical use#) / (start to end of observation window),
    includes in numerator meds carried into observation window
    CMA8 counted counted counted (# days theoretical use#) / (lagged* start of obs’n window to end of
    window), numerator and denominator ignore intial lag period
    ^refers to whether the timing of the dispensing (actual date dispensed) is taken into account in the calculations or is ignored.
    #assumes medications taken as directed and new medications “banked” until needed.
    *lag refers to initial period covered by medication supply on hand at start of observation window. Medications dispensed during lag interval are “banked” and
    counted starting with end of lag. 基本は累積処⽅⽇数/観察期間総⽇数
    観察期間をどこまでにするか、100%を超えたら
    どうするかなどの違いでCMA1-8まである。
    CMA (continuous multiple interval measures of medication availability/gaps)
    Vollmer WM, Xu M, Feldstein A, Smith D, Waterbury A, Rand C. Comparison of pharmacy-based measures of
    medication adherence. BMC Health Serv Res. 2012;12:155. Published 2012 Jun 12.

    View full-size slide

  41. Assessing Medication Adherence Using Stata
    Ariel Linden
    Linden Consulting Group, LLC
    San Francisco, CA, USA
    [email protected]
    Abstract. In this article I introduce the medadhere package, which computes medication
    adherence rates for two commonly-used measures in research and practice -- the
    medication possession ratio (MPR) and proportion of days covered (PDC). medadhere
    computes adherence rates for a single medication or multiple medications, and its options
    provide great flexibility to support the specific needs of the user.
    Keywords: medication adherence, medication compliance, medication possession ratio,
    proportion of days covered, pharmacy claims
    1 Introduction
    While most patients leave the doctor’s office with a medication prescription, many fail to take their
    medication as prescribed. According to the World Health Organization, medication adherence
    (also referred to as compliance) rates in developed countries average only about 50 percent (Sabaté
    The Stata Journal. Volume: 19 issue: 4, page(s): 820-831
    STATA Journalに載ってました

    View full-size slide

  42. A single patient on a single medication
    A single patient on multiple medications
    MPRとPDCを出してくれる

    View full-size slide

  43. Multiple patients on a single medication
    Multiple patients on multiple medications

    View full-size slide

  44. 閾値を決めて(80%)クロス集計も作れます

    View full-size slide

  45. 今⽇のまとめ

    View full-size slide

  46. 服薬アドヒアランスの指標はMPRとPDCがよく使われる
    PDCを使うのが無難
    STATA、R、SASでcodeがある

    View full-size slide