du Mouza, C., Travers, N. and Constantin, C. (2021): Reducing the filter bubble effect on Twitter by considering communities for recommendations, International Journal of Web Information Systems, Vol. 17 No. 6, pp. 728-752, https://doi.org/10.1108/IJWIS-06-2021-0065 M. Jasim, C. Collins, A. Sarvghad, N. Mahyar (2022): Supporting Serendipitous Discovery and Balanced Analysis of Online Product Reviews with Interaction-Driven Metrics and Bias-Mitigating Suggestions, CHI'22 Proceedings, Article No. 9, pp. 1-24, https://doi.org/10.1145/3491102.3517649
Vasilyev et al. (2019): Headline Generation: Learning from Decomposable Document Titles, arXiv: 1904.08455, https://doi.org/10.48550/arXiv.1904.08455 Guo, L., Wang, Y., Li, P., Wang, Y., & Li, Y. (2024): The Impact of Headline Characteristics on Clicks: A Case Study of a Chinese Local Medium. Journalism Practice, 1–29, https://doi.org/10.1080/17512786.2024.2411624 G. Gao et al.(2024): Enhancing Emotion Prediction in News Headlines: Insights from ChatGPT and Seq2Seq Models for Free-Text Generation, Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) 5944-5955, https://doi.org/10.48550/arXiv.2407.10091