表現学習において、特定の埋め込み次元数で訓練されたモデルを変更することなく、出力埋め込みをある程度任意の埋め込み次元数に容易に縮小可能にできる手法である Matryoshka Representation Learning (MRL) について解説した資料です。
元論文: https://arxiv.org/abs/2205.13147