Upgrade to Pro — share decks privately, control downloads, hide ads and more …

(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks ...

itakigawa
September 27, 2023
190

(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?

Graph Neural Networks (GNNs) の世界をのぞいてみませんか?

日本化学会 第10回CSJ化学フェスタ2020
https://www.csj.jp/festa/2020/

テーマ企画:
データサイエンスの世界をのぞいてみませんか?
10月20日(火)9:25〜17:15
https://onsite.gakkai-web.net/chemistry/program/#sec45

itakigawa

September 27, 2023
Tweet

More Decks by itakigawa

Transcript

  1. ˖ 堣唒㷕统הכ ˖ ⴓ㶨ךؚٓؿ邌植 ˖ 彊⪒帾㾴㷕统ך؝؝ٗ GPSXBSEהCBDLXBSE  ˖ (SBQI/FVSBM/FUXPSLTהכ

    ˖ 荈ⴓדװ׏ג׫׷׋׭ך䞔㜠 ˖ ֶתֽ
 剑鵚ך鑧 鎘皾ꣲ歲ծⴓ㶨欰䧭ծ✲⵸㷕统ծ 劤傈ךⰻ㺁 (// (SBQI/FVSBM/FUXPSLT דؚٓؿ邌植ׁ׸׋ⴓ㶨׾ Ⰵ⸂ח׃ג堣唒㷕统ׅ׷װ׶倯׾ך׊ְג׫תׇ׿ַ
  2. ˖ 堣唒㷕统הכ ˖ ⴓ㶨ךؚٓؿ邌植 ˖ 彊⪒帾㾴㷕统ך؝؝ٗ GPSXBSEהCBDLXBSE  ˖ (SBQI/FVSBM/FUXPSLTהכ

    ˖ 荈ⴓדװ׏ג׫׷׋׭ך䞔㜠 ˖ ֶתֽ
 剑鵚ך鑧 鎘皾ꣲ歲ծⴓ㶨欰䧭ծ✲⵸㷕统ծ 劤傈ךⰻ㺁 (// (SBQI/FVSBM/FUXPSLT דؚٓؿ邌植ׁ׸׋ⴓ㶨׾ Ⰵ⸂ח׃ג堣唒㷕统ׅ׷װ׶倯׾ך׊ְג׫תׇ׿ַ
  3. 堣唒㷕统倜׃ְفؚٗٓىؚٝךػٓت؎ي ♧菙暟⡤钠陎 ˑ֮׶ָהֲ˒ J’aime la musique I love music 갈㡮钠陎

    堣唒缺鏬 馄鍑⫷ ؜٦ي"* 堣唒㷕统㢳ꆀךⰅ⳿⸂ך鋅劤⢽ַ׵فؚٗٓي׾ 荈⹛涸ח⡲䧭ׅ׷ ְְַ־׿ז 䪮遭
  4. ➙傈ך⢽ⴓ㶨ך崞䚍װ暟䚍ך✮庠 24"32413 ⴓ㶨ך崞䚍٥暟䚍ך✮庠 CH 3 N N H N H

    H 3 C N 0.739 ꣖㹱慬䏝    H 3 C H 3 C NH O N O N O CH3 O N NH 2 O CH3 Br CH3 N H 3 C H N S N O CH3 N OH CH3 CH3 N N N CH3 H 3 C H2 N NH2   Ⰵ⳿⸂ך 鋅劤⢽
  5. ⴓ㶨ךؚٓؿ邌植ה(SBQI/FVSBM/FUXPSLT (//T ⴓ㶨ך崞䚍٥暟䚍ך✮庠 CH 3 N N H N H

    H 3 C N 0.739 ꣖㹱慬䏝 葿ղװ׶倯֮׷ֽ׸ו➙傈כ(//׾ך׊ְג׫תׇ׿ַ ⴓ㶨圓鸡 ⴓ㶨鎸鶢㶨 )BOTDI谏歊岀זו ⴓ㶨ךؚٓؿ邌植 N O C C C C H H H H H 暴䗙كؙزٕ 害欽ך
 堣唒㷕统 (SBQI
 /FVSBM
 /FUXPSLT ⴓ㶨ؿ؍ٝؖ٦ فٔٝز
 &$'1岀זו ✮庠⦼
  6. ⹛堣(//כ䎢ְٌتٔذ؍׾窟♧涸ח䪔ֲֿהָדֹ׷ Brc1cncc(Br)c1 4.*-&4 ⻉㷕圓鸡䒭 甧⡤圓鸡 ꨵ㶨朐䡾 俑㶵⴨ ؚٓؿ
 杞纏 䎗⡦涸


    挿꧊さ 瑞꟦涸ⴓ䋒
 نُٔ٦ي 甧⡤ꂁ䏟 1VC$IFN%      ⽃穠さך
 㔐鯄ך荈歋䏝 O N N N H NH N N N CH3 CH3 䫑䝤䚍航泊⶝ $*% (//ד䪔ִ׷ٌتٔذ؍כ
 杞纏ךչؚٓؿպ״׶䎢ְ / #S #S
  7. ⴓ㶨邌植 CC1CCNO1 如⯋ 如⯋ 如⯋ 宏稆 *NQMJDJU 宏稆 &YQMJDJU $BOPOJDBM4.*-&4

    ⴓ㶨ךؚٓؿ邌植 N O C C C C H H H H H 暴䗙كؙزٕ .0-䕎䒭 ⾱㶨呌ךYZ[ ⻉㷕穠さ
  8. 㹋ꥷךⴓ㶨ؚٓؿر٦ة׾鋅ג׫״ֲ N O C C C C H H H

    H H 殢湡ך ֿךⴓ㶨ך NPM׾錁㻊
  9. 㹋ꥷךⴓ㶨ؚٓؿر٦ة׾鋅ג׫״ֲ Dipole moment Isotropic polarizability Highest occupied molecular orbital (HOMO)

    energy Lowest unoccupied molecular orbital (LUMO) energy Gap between HOMO and LUMO Electronic spatial extent Zero point vibrational energy Internal energy at 0K Internal energy at 298.15K Enthalpy at 298.15K Free energy at 298.15K Heat capavity at 298.15K Atomization energy at 0K Atomization energy at 298.15K Atomization enthalpy at 298.15K Atomization free energy at 298.15K Rotational constant A Rotational constant B Rotational constant C N O C C C C H H H H H ֿ׸׵ך%'5鎘皾⦼׾
 %'5׃זְד ✮庠ׅ׷ةأؙ ةذח邌爙
  10. 㹋ꥷךⴓ㶨ؚٓؿر٦ة׾鋅ג׫״ֲ 갥挿ך暴䗙كؙزٕ 如⯋ H C N O F (one-hot
 encoding)

    0 1 2 3 4 5 6 7 8 9 10 https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/qm9.html ⾱㶨殢〾 BSPNBUJD    TQ    TQ    TQ    穠さׅ׷)ך侧 ֿ׸⟃㢩ח׮ְ׹ְ׹剣׶ִ׷ֿהח岣䠐 N O C C C C H H H H H
  11. (//ָװ׷ֿה 갥挿ך暴䗙كؙزٕ 如⯋ NPMY NPMQPT 갥挿ך⡘縧كؙزٕ 如⯋ NPMFEHF@BUUS NPMFEHF@JOEFY 鴟ך暴䗙كؙزٕ

    如⯋ 鴟ה穠さ⾱㶨ل،ך㼎䘔 ⴓ㶨ךؚٓؿ邌植 N O C C C C H H H H H 暴䗙كؙزٕ NPMZ %'5鎘皾⦼ 如⯋ 㔿㹀؟؎ؤך كؙزٕ邌植 3FHSFTTPS
 )FBE
 .-1זו (// 〳㢌؟؎ؤךⴓ㶨ؚٓؿַ׵չ㔿㹀؟؎ؤךكؙزٕ邌植պפך㢌䳔׾㷕统
  12. 呌הז׷䪮遭♳ך銲⟝ (// 麩ֲ؟؎ؤךⴓ㶨ؚٓؿ׾Ⰵ⸂׃ג׮
 ְא׮չ㔿㹀؟؎ؤךكؙزٕ邌植պָ⳿⸂ׁ׸זְהְֽזְ CH 3 N N H N

    H H 3 C N H 3 C H 3 C NH O N O N O CH3 O N NH 2 O CH3 Br CH3 N H 3 C H N S N O CH3 N OH CH3 CH3 N N N CH3 H 3 C H2 N NH2 (// (// (// (// 갥挿侧װ 鴟侧ָ殯ז׷ ⴓ㶨ؚٓؿ ְא׮ ずׄ؟؎ؤך كؙزٕ׾⳿⸂
  13. ˖ 堣唒㷕统הכ ˖ ⴓ㶨ךؚٓؿ邌植 ˖ 彊⪒帾㾴㷕统ך؝؝ٗ GPSXBSEהCBDLXBSE  ˖ (SBQI/FVSBM/FUXPSLTהכ

    ˖ 荈ⴓדװ׏ג׫׷׋׭ך䞔㜠 ˖ ֶתֽ
 剑鵚ך鑧 鎘皾ꣲ歲ծⴓ㶨欰䧭ծ✲⵸㷕统ծ 劤傈ךⰻ㺁 (// (SBQI/FVSBM/FUXPSLT דؚٓؿ邌植ׁ׸׋ⴓ㶨׾ Ⰵ⸂ח׃ג堣唒㷕统ׅ׷װ׶倯׾ך׊ְג׫תׇ׿ַ
  14. GPSXBSEדאְדחװ׷ֿה⨉䗍ⴓ⦼׮鎘皾 5 0.2 0.3 0.4 1 -2 0.17 0.05 1.0

    0.95 8.7 1.4 ⺟ꂁ׾鎘皾ׅ׷㢌侧כאְדחぐ稆怴皾ך⨉䗍ⴓ⦼׮鎘皾׃גֶֻ
  15. GPSXBSEדאְדחװ׷ֿה⨉䗍ⴓ⦼׮鎘皾 5 0.2 0.3 0.4 1 -2 0.17 0.05 1.0

    0.95 8.7 1.4 1 ⺟ꂁ׾鎘皾ׅ׷㢌侧כאְדחぐ稆怴皾ך⨉䗍ⴓ⦼׮鎘皾׃גֶֻ
  16. GPSXBSEדאְדחװ׷ֿה⨉䗍ⴓ⦼׮鎘皾 5 0.2 0.3 0.4 1 -2 0.17 0.05 1.0

    0.95 8.7 1.4 1 -0.99 ⺟ꂁ׾鎘皾ׅ׷㢌侧כאְדחぐ稆怴皾ך⨉䗍ⴓ⦼׮鎘皾׃גֶֻ
  17. GPSXBSEדאְדחװ׷ֿה⨉䗍ⴓ⦼׮鎘皾 5 0.2 0.3 0.4 1 -2 0.17 0.05 1.0

    0.95 8.7 1.4 1 -0.99 0.3 0.17 ⺟ꂁ׾鎘皾ׅ׷㢌侧כאְדחぐ稆怴皾ך⨉䗍ⴓ⦼׮鎘皾׃גֶֻ
  18. GPSXBSEדאְדחװ׷ֿה⨉䗍ⴓ⦼׮鎘皾 5 0.2 0.3 0.4 1 -2 0.17 0.05 1.0

    0.95 8.7 1.4 1 -0.99 0.3 0.17 5 ⺟ꂁ׾鎘皾ׅ׷㢌侧כאְדחぐ稆怴皾ך⨉䗍ⴓ⦼׮鎘皾׃גֶֻ
  19. GPSXBSEדאְדחװ׷ֿה⨉䗍ⴓ⦼׮鎘皾 5 0.2 0.3 0.4 1 -2 0.17 0.05 1.0

    0.95 8.7 1.4 1 -0.99 0.3 0.17 5 -1 1 ⺟ꂁ׾鎘皾ׅ׷㢌侧כאְדחぐ稆怴皾ך⨉䗍ⴓ⦼׮鎘皾׃גֶֻ
  20. GPSXBSEדאְדחװ׷ֿה⨉䗍ⴓ⦼׮鎘皾 5 0.2 0.3 0.4 1 -2 0.17 0.05 1.0

    0.95 8.7 1.4 1 -0.99 0.3 0.17 5 -1 1 5.9 ⺟ꂁ׾鎘皾ׅ׷㢌侧כאְדחぐ稆怴皾ך⨉䗍ⴓ⦼׮鎘皾׃גֶֻ
  21. GPSXBSEדאְדחװ׷ֿה⨉䗍ⴓ⦼׮鎘皾 さ䧭ח⢪ִ׷稆怴皾כ✮׭寸׭ג׉׸׊׸ך䗍ⴓⰕ䒭׮䭯׏גֶֻ ˖ ⸇幾⛦ꤐ
 UPSDIBEE UPSDITVC UPSDINVM UPSDIEJW  ˖

    ♲錬ꟼ侧
 UPSDITJO UPSDIDPT UPSDIUBO UPSDIBTJO  ˖ 䭷侧٥㼎侧٥ץֹ
 UPSDIQPX UPSDIMPH UPSDITRVBSF UPSDITRSU  ˖ 遤⴨怴皾
 UPSDINBUNVM UPSDIEPU UPSDIJOWFSTF UPSDIEFU  ˖ 乼⡲
 UPSDITVN UPSDINFBO UPSDINBY UPSDIBSHNJO  㢌侧ךさ䧭ח⢪ִ׷稆怴皾ך⢽ https://pytorch.org/docs/stable/torch.html#math-operations
  22. CBDLXBSE さ䧭ꟼ侧ך䗍ⴓך鸬ꓲ䖒״׶ծ鎘皾ؚٓؿ׾⢪׏ג知⽃ח鎘皾דֹ׷ 5.9 5.9 5.9 1 5 -1 0.17 -1

    0.3 -0.99 1 29.5 -1.00 1.75 1 -0.99 0.3 0.17 5 -1 1 5.9 = = = × × × × × × × ×
  23. فؚٗٓيהכ瑔噰涸חכ稆怴皾ך⡦׵ַךさ䧭ꟼ侧 GPSXBSE CBDLXBSE 荈⹛䗍ⴓ 5 0.2 0.3 0.4 1 -2

    0.17 0.05 1.0 0.95 8.7 1.4 1 -0.99 0.3 0.17 5 -1 1 5.9 ✮庠⦼ MPTT⦼ ⺟ꂁكؙزٕ
  24. 劤傈ךⰻ㺁 ˖ 堣唒㷕统הכ ˖ ⴓ㶨ךؚٓؿ邌植 ˖ 彊⪒帾㾴㷕统ך؝؝ٗ GPSXBSEהCBDLXBSE  ˖

    (SBQI/FVSBM/FUXPSLTהכ ˖ 荈ⴓדװ׏ג׫׷׋׭ך䞔㜠 ˖ ֶתֽ
 剑鵚ך鑧 鎘皾ꣲ歲ծⴓ㶨欰䧭ծ✲⵸㷕统ծ (// (SBQI/FVSBM/FUXPSLT דؚٓؿ邌植ׁ׸׋ⴓ㶨׾ Ⰵ⸂ח׃ג堣唒㷕统ׅ׷װ׶倯׾ך׊ְג׫תׇ׿ַ
  25. (//♴鎸ך㢌䳔׾⡦׵ַךさ䧭ꟼ侧דرؠ؎ٝ׃׋׮ך 갥挿ך暴䗙كؙزٕ 如⯋ NPMY NPMQPT 갥挿ך⡘縧كؙزٕ 如⯋ NPMFEHF@BUUS NPMFEHF@JOEFY 鴟ך暴䗙كؙزٕ

    如⯋ 鴟ה穠さ⾱㶨ل،ך㼎䘔 ⴓ㶨ךؚٓؿ邌植 N O C C C C H H H H H 暴䗙كؙزٕ NPMZ %'5鎘皾⦼ 如⯋ 㔿㹀؟؎ؤך كؙزٕ邌植 3FHSFTTPS
 )FBE
 .-1זו (// 〳㢌؟؎ؤךⴓ㶨ؚٓؿַ׵չ㔿㹀؟؎ؤךكؙزٕ邌植պפך㢌䳔׾㷕统
  26. 㛇劤麣Ⱗ.-1 㢳㾴ػ٦إفزٗٝ x =  x1 x2 x1 x2 1

    1 w0 ji w00 i wkj 1 y import torch.nn as nn nn.Sequential(nn.Linear(2, 3), nn.ReLU(), nn.Linear(3, 2), nn.ReLu(), nn.Linear(2, 1)) UPSDIOO-JOFBS ˖ JO@GFBUVSFT ˖ PVU@GFBUVSFT ˖ CJBT 5SVF'BMTF Ⰵ⸂؟؎ؤ ⳿⸂؟؎ؤ CJBTך剣搀   1 Ⰵ⸂
 ؟؎ؤ CJBT ⳿⸂
 ؟؎ؤ
  27. .FTTBHF1BTTJOH PS/FJHICPSIPPE"HHSFHBUJPO N O C C C C H H

    H H H N O C C C C H H H H H ぐ暴䗙كؙزٕך刿倜 MLPͳͲ (sum, mean or max) 갫殢ח⣛㶷׃זְ꧊秈乼⡲ MLPͳͲ UPSDI@HFPNFUSJDOO .FTTBHF1BTTJOH Ԯ ԯ ԰ Ԯ ԯ ԰
  28. .FTTBHF1BTTJOH PS/FJHICPSIPPE"HHSFHBUJPO 1 2 3 4 5 6 0 1

    0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 0 1 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 = = = 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 3 4 5 2 + + + ꦄ䱸遤⴨זו׾⢪׏ג׮ ꧊秈ׅ׷乼⡲כ剅ֽ׷
  29. .FTTBHF1BTTJOH PS/FJHICPSIPPE"HHSFHBUJPO ˖ UPSDI@HFPNFUSJDOO4DI/FU 4DI»UUFUBM /*14 ˖ UPSDI@HFPNFUSJDOO("5$POW 7FMJčLPWJćFUBM *$-3

    https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html YZ[דך騃ꨄ׾鴟ꅾ׫ח׃ג꧊秈儗ח崞欽ׅ׷ ꧊秈乼⡲כءٝفٕ׌ָ،ذٝءّٝ堣圓דꅾ׫׾黝䘔涸ח 銲稆琎 ]]DPODBU
  30. 3FBEPVUؚٓؿח㼎ׅ׷㔿㹀؟؎ؤ邌植׾䖤׷ N O C C C C H H H

    H H  3FBEPVU ˖ UPSDI@HFPNFUSJDOO(MPCBM"UUFOUJPO 㾴侧 ։ ˖ UPSDI@HFPNFUSJDOO4FU4FU ˖ UPSDI@HFPNFUSJDOOHMPCBM@BEE@QPPM
 UPSDI@HFPNFUSJDOOHMPCBM@NBY@QPPM
 UPSDI@HFPNFUSJDOOHMPCBM@NFBO@QPPM ˖ UPSDI@HFPNFUSJDOOHMPCBM@TPSU@QPPM (sum, mean or max) 갫殢ח⣛㶷׃זְ꧊秈乼⡲ 剑䖓ך銲稆דTPSU׃גزحفL׾DPODBU
  31. (//♴鎸ך㢌䳔׾⡦׵ַךさ䧭ꟼ侧דرؠ؎ٝ׃׋׮ך 갥挿ך暴䗙كؙزٕ 如⯋ NPMY NPMQPT 갥挿ך⡘縧كؙزٕ 如⯋ NPMFEHF@BUUS NPMFEHF@JOEFY 鴟ך暴䗙كؙزٕ

    如⯋ 鴟ה穠さ⾱㶨ل،ך㼎䘔 ⴓ㶨ךؚٓؿ邌植 N O C C C C H H H H H 暴䗙كؙزٕ NPMZ %'5鎘皾⦼ 如⯋ 㔿㹀؟؎ؤך كؙزٕ邌植 3FHSFTTPS
 )FBE
 .-1זו (// 〳㢌؟؎ؤךⴓ㶨ؚٓؿַ׵չ㔿㹀؟؎ؤךكؙزٕ邌植պפך㢌䳔׾㷕统
  32. 岣䠐 ˖ 2.ךةأؙך㜥さכקרYZ[ YQPT ך䞔㜠ָ䗳銲׌ָծ
 ⽃秪ז(//כYFEHF@BUUS׮⢪׻זְךד黝㹅何㢌ָ䗳銲 ˖ ⢽ִלYFEHF@BUUSח⾱㶨꟦騃ꨄ׾⸇ִג$POWד崞欽  ˖

    ׉ךתת⢪ֲ㜥さכ4DI/FUװ%JNF/FUָぢְגְ׷ ˖ Ⱅ䒭؝٦س؟ٝفٕ׮ثؑحؙ
 IUUQTHJUIVCDPNSVTUZTQZUPSDI@HFPNFUSJDUSFFNBTUFSFYBNQMFT
  33. 劤傈ךⰻ㺁 ˖ 堣唒㷕统הכ ˖ ⴓ㶨ךؚٓؿ邌植 ˖ 彊⪒帾㾴㷕统ך؝؝ٗ GPSXBSEהCBDLXBSE  ˖

    (SBQI/FVSBM/FUXPSLTהכ ˖ 荈ⴓדװ׏ג׫׷׋׭ך䞔㜠 ˖ ֶתֽ
 剑鵚ך鑧 鎘皾ꣲ歲ծⴓ㶨欰䧭ծ✲⵸㷕统ծ (// (SBQI/FVSBM/FUXPSLT דؚٓؿ邌植ׁ׸׋ⴓ㶨׾ Ⰵ⸂ח׃ג堣唒㷕统ׅ׷װ׶倯׾ך׊ְג׫תׇ׿ַ
  34. (SBQI/FVSBM/FUXPSLT׾濼׷׋׭ךאךا٦أ https://ai.tencent.com/ailab/ml/KDD-Deep-Graph-Learning.html • KDD2020 Tutorial
 Deep Graph Learning: Foundations, Advances

    and Applications http://cse.msu.edu/~mayao4/dlg_book/index.html • Book "Deep Learning on Graphs" • CS224W: Machine Learning with Graphs (Stanford) http://web.stanford.edu/class/cs224w/ https://youtu.be/-UjytpbqX4A
  35. 劤傈ךⰻ㺁 ˖ 堣唒㷕统הכ ˖ ⴓ㶨ךؚٓؿ邌植 ˖ 彊⪒帾㾴㷕统ך؝؝ٗ GPSXBSEהCBDLXBSE  ˖

    (SBQI/FVSBM/FUXPSLTהכ ˖ 荈ⴓדװ׏ג׫׷׋׭ך䞔㜠 ˖ ֶתֽ
 剑鵚ך鑧 鎘皾ꣲ歲ծⴓ㶨欰䧭ծ✲⵸㷕统ծ (// (SBQI/FVSBM/FUXPSLT דؚٓؿ邌植ׁ׸׋ⴓ㶨׾ Ⰵ⸂ח׃ג堣唒㷕统ׅ׷װ׶倯׾ך׊ְג׫תׇ׿ַ
  36. (//כ涪㾜鷿♳ך䪮遭ד植㖈鹌遤䕎ד灇瑔ׁ׸גְ׷ ˖ ✲⵸㷕统ָדֹזְ ˖ %FFQחדֹזְ ˖ 㷕统דֹ׷邌植חꣲ歲ָ֮׷ Generalization and Representational

    Limits of Graph Neural Networks Garg, Jegelka, Jaakkola (ICML2020) PairNorm: Tackling Oversmoothing in GNNs Zhao, Akoglu (ICLR2020) Towards Deeper Graph Neural Networks with Differentiable Group Normalization Zhou, Huang, Li, Zha, Chen, Hu (NeurIPS2020) Strategies for Pre-training Graph Neural Networks Hu, Liu, Gomes, Zitnik, Liang, Pande, Leskovec (ICLR2020) GROVER: Self-Supervised Message Passing Transformer on Large-scale Molecular Graphs Rong, Bian, Xu, Xie, Wei, Huang, Huang (NeurIPS2020) DeepGCNs: Can GCNs Go as Deep as CNNs? Li, Müller, Thabet, Ghanem (ICCV2019)
  37. ➙傈ך鑧ך䘔欽٥涪㾜 ˖ ⻉㷕⿾䘔ך✮庠٥鷞さ䧭 ˖ ⴓ㶨ך欰䧭 ˖ (SBQI1PPMJOH Path Integral Based

    Convolution and Pooling for Graph Neural Networks Ma, Xuan, Guang Wang, Li, Liò (NeurIPS2020) Hierarchical Generation of Molecular Graphs using Structural Motifs Jin, Barzilay, Jaakkola (ICML2020) GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation Shi, Xu, Zhu, Zhang, Zhang, Tang (ICLR2020) RetroXpert: Decompose Retrosynthesis Prediction like A Chemist Yan, Ding, Zhao, Zheng, Yang, Yu, Huang (NeurIPS2020) A Graph to Graphs Framework for Retrosynthesis Prediction Shi, Xu, Guo, Zhang, Tang (ICML2020) Rethinking Pooling in Graph Neural Networks Mesquita, Souza, Kaski (NeurIPS2020)
  38. תה׭ ˖ 堣唒㷕统הכ ˖ ⴓ㶨ךؚٓؿ邌植 ˖ 彊⪒帾㾴㷕统ך؝؝ٗ GPSXBSEהCBDLXBSE  ˖

    (SBQI/FVSBM/FUXPSLTהכ ˖ 荈ⴓדװ׏ג׫׷׋׭ך䞔㜠 ˖ ֶתֽ
 剑鵚ך鑧 鎘皾ꣲ歲ծⴓ㶨欰䧭ծ✲⵸㷕统ծ (// (SBQI/FVSBM/FUXPSLT דؚٓؿ邌植ׁ׸׋ⴓ㶨׾ Ⰵ⸂ח׃ג堣唒㷕统ׅ׷װ׶倯׾ך׊ְג׫תׇ׿ַ