Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyData Meetup Group Presentation
Search
Jason Rudy
May 29, 2013
Programming
2
810
PyData Meetup Group Presentation
Presentation on py-earth to the San Francisco PyData Meetup group on 2013-05-29.
Jason Rudy
May 29, 2013
Tweet
Share
Other Decks in Programming
See All in Programming
AWS CDKの推しポイントN選
akihisaikeda
1
210
JEP 496 と JEP 497 から学ぶ耐量子計算機暗号入門 / Learning Post-Quantum Crypto Basics from JEP 496 & 497
mackey0225
2
500
競馬で学ぶ機械学習の基本と実践 / Machine Learning with Horse Racing
shoheimitani
14
14k
Micro Frontendsで築いた 共通基盤と運用の試行錯誤 / Building a Shared Platform with Micro Frontends: Operational Learnings
kyntk
1
1.6k
社内オペレーション改善のためのTypeScript / TSKaigi Hokuriku 2025
dachi023
1
130
CloudNative Days Winter 2025: 一週間で作る低レイヤコンテナランタイム
ternbusty
7
1.8k
251126 TestState APIってなんだっけ?Step Functionsテストどう変わる?
east_takumi
0
270
レイトレZ世代に捧ぐ、今からレイトレを始めるための小径
ichi_raven
0
480
All(?) About Point Sets
hole
0
230
全員アーキテクトで挑む、 巨大で高密度なドメインの紐解き方
agatan
8
11k
React Native New Architecture 移行実践報告
taminif
1
110
最新のDirectX12で使えるレイトレ周りの機能追加について
projectasura
0
310
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
340
57k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Bash Introduction
62gerente
615
210k
Speed Design
sergeychernyshev
33
1.3k
Rails Girls Zürich Keynote
gr2m
95
14k
We Have a Design System, Now What?
morganepeng
54
7.9k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Designing Experiences People Love
moore
142
24k
Optimizing for Happiness
mojombo
379
70k
A better future with KSS
kneath
239
18k
Transcript
MARS in Python or A Tale of Two Planets 1
Outline • Motivating use case • MARS algorithm • Py-earth
• Examples 2
3
4
M A R S ultivariate daptive egression plines 5
Not MARS •MARSplines •MARegressionSplines •ARES •earth 6
7
HbA1c Age Gender Etc. Cost X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 8
Constraints •Non-monotone relationships among variables •Interactions among predictors •Simple model
9
10
11
Illustration by Yi-Ke Peng 12
13
Python R My Brain Raw data processing Object-relational mapping Feature
extraction Plotting Bootstrapping Normalization Multivariate Adaptive Regression Splines 14
15
16
Regression: The search for f(x) yj = f ( x1j,
. . . , xnj) + ✏j 17
Linear Regression ˆ f ( x ) = a0 +
P X i=1 aixi 18
Multivariate Adaptive Regression Splines ˆ f ( x ) =
a0 + M X m=1 am Km Y k=1 ⇥ skm xv(k,m) tkm ⇤ + 19
Hinge Functions CDify h ( x t ) = [
x t ]+ = ( x t, x > t 0 , x t 20
Multivariate Adaptive Regression Splines ˆ f ( x ) =
a0 + M X m=1 am Km Y k=1 ⇥ skm xv(k,m) tkm ⇤ + 21
y = 1 2h (1 x ) + 1 2
h ( x 1) Multivariate Adaptive Regression Splines 22
Multivariate Adaptive Regression Splines y = h ( x 1)
h ( x 1) + h (1 x ) h (1 x ) 23
Multivariate Adaptive Regression Splines y = 2 + 0 .
1h ( x 1) + h (1 x ) + 3h ( x 1) h (4 x ) 24
Multivariate Example z = h ( 3 x ) +
h ( 3 x ) h (5 y ) 25
Multivariate Adaptive Regression Splines ˆ f ( x ) =
a0 + M X m=1 am Km Y k=1 ⇥ skm xv(k,m) tkm ⇤ + 26
Forward Pass Pruning Pass 27
Forward Pass • while True: • best_err = Infinity •
for each term, predictor, knot candidate: • err = get_squared_error(term, predictor, knot) • if err < best_err: • best_err = err • best_term, best_pred, best_knot = term, predictor, knot • add term pair for best_term, best_pred, best_knot • check stopping conditions 28
Forward Pass 1 Start Iteration 1 Iteration 2 h( x
t ) h( t x ) h( x t ) ⇥ h ( x s ) h( x t ) ⇥ h ( s x ) 29
Forward Pass • while True: • best_err = Infinity •
for each term, predictor, knot candidate: • err = get_squared_error(term, predictor, knot) • if err < best_err: • best_err = err • best_term, best_pred, best_knot = term, predictor, knot • add term pair for best_term, best_pred, best_knot • check stopping conditions 30
O N2P3 31
Forward Pass 1 Start Iteration 1 Iteration 2 h( x
t ) h( t x ) h( x t ) ⇥ h ( x s ) h( x t ) ⇥ h ( s x ) 32
Generalized Cross Validation GCV = 1 N PN i=1 [yi
ˆ yi]2 1 N2 (N Q d (Q 1))2 33
Pruning Pass • for i in range(num_terms): • best_score =
Infinity • for term in terms: • score = GCV(model \ term) • if score < best_score: • best_score = score • term_to_drop = term • remove term_to_drop from model • models[i] = model.copy() • scores[i] = score • selected_model = models[argmin(scores)] 34
Pruning Pass 1 h( x t ) h( t x
) h( x t ) ⇥ h ( x s ) h( x t ) ⇥ h ( s x ) 35
Final Model [yi ˆ yi]2 d(Q 1))2 y = a0
+ a1 h ( t x ) + a2 h ( x t ) h ( x s ) 36
37
Implementation Goals •Compatible with numpy ecosystem •Fast and reliable •Easy
to maintain 38
39
40
>git clone git://github.com/jcrudy/py-earth.git >cd py-earth >sudo python setup.py install Installation
41
Important Earth Methods •fit(X,y) •transform(X) •predict(X) 42
Simple Example 43
Simple Example 44
45
With Pandas 46
With Patsy 47
Classification 48
Classification 49
50
Future Plans •Documentation •Integrate into scikit-learn •Multiple responses •Sample weights
51
Summary • MARS is a simple but flexible regression method
• py-earth is MARS for Python data stack • Try it! 52
py-earth A far better thing than I have ever done
• https://github.com/jcrudy/py-earth 53