Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyData Meetup Group Presentation
Search
Jason Rudy
May 29, 2013
Programming
2
820
PyData Meetup Group Presentation
Presentation on py-earth to the San Francisco PyData Meetup group on 2013-05-29.
Jason Rudy
May 29, 2013
Tweet
Share
Other Decks in Programming
See All in Programming
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
170
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
220
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
400
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.2k
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
390
CSC307 Lecture 02
javiergs
PRO
1
770
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
180
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
260
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
560
rack-attack gemによるリクエスト制限の失敗と学び
pndcat
0
260
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
11
5.9k
Featured
See All Featured
Navigating Weather and Climate Data
rabernat
0
77
Automating Front-end Workflow
addyosmani
1371
200k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
300
Tell your own story through comics
letsgokoyo
1
800
The Cult of Friendly URLs
andyhume
79
6.8k
RailsConf 2023
tenderlove
30
1.3k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
440
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.5k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Transcript
MARS in Python or A Tale of Two Planets 1
Outline • Motivating use case • MARS algorithm • Py-earth
• Examples 2
3
4
M A R S ultivariate daptive egression plines 5
Not MARS •MARSplines •MARegressionSplines •ARES •earth 6
7
HbA1c Age Gender Etc. Cost X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 8
Constraints •Non-monotone relationships among variables •Interactions among predictors •Simple model
9
10
11
Illustration by Yi-Ke Peng 12
13
Python R My Brain Raw data processing Object-relational mapping Feature
extraction Plotting Bootstrapping Normalization Multivariate Adaptive Regression Splines 14
15
16
Regression: The search for f(x) yj = f ( x1j,
. . . , xnj) + ✏j 17
Linear Regression ˆ f ( x ) = a0 +
P X i=1 aixi 18
Multivariate Adaptive Regression Splines ˆ f ( x ) =
a0 + M X m=1 am Km Y k=1 ⇥ skm xv(k,m) tkm ⇤ + 19
Hinge Functions CDify h ( x t ) = [
x t ]+ = ( x t, x > t 0 , x t 20
Multivariate Adaptive Regression Splines ˆ f ( x ) =
a0 + M X m=1 am Km Y k=1 ⇥ skm xv(k,m) tkm ⇤ + 21
y = 1 2h (1 x ) + 1 2
h ( x 1) Multivariate Adaptive Regression Splines 22
Multivariate Adaptive Regression Splines y = h ( x 1)
h ( x 1) + h (1 x ) h (1 x ) 23
Multivariate Adaptive Regression Splines y = 2 + 0 .
1h ( x 1) + h (1 x ) + 3h ( x 1) h (4 x ) 24
Multivariate Example z = h ( 3 x ) +
h ( 3 x ) h (5 y ) 25
Multivariate Adaptive Regression Splines ˆ f ( x ) =
a0 + M X m=1 am Km Y k=1 ⇥ skm xv(k,m) tkm ⇤ + 26
Forward Pass Pruning Pass 27
Forward Pass • while True: • best_err = Infinity •
for each term, predictor, knot candidate: • err = get_squared_error(term, predictor, knot) • if err < best_err: • best_err = err • best_term, best_pred, best_knot = term, predictor, knot • add term pair for best_term, best_pred, best_knot • check stopping conditions 28
Forward Pass 1 Start Iteration 1 Iteration 2 h( x
t ) h( t x ) h( x t ) ⇥ h ( x s ) h( x t ) ⇥ h ( s x ) 29
Forward Pass • while True: • best_err = Infinity •
for each term, predictor, knot candidate: • err = get_squared_error(term, predictor, knot) • if err < best_err: • best_err = err • best_term, best_pred, best_knot = term, predictor, knot • add term pair for best_term, best_pred, best_knot • check stopping conditions 30
O N2P3 31
Forward Pass 1 Start Iteration 1 Iteration 2 h( x
t ) h( t x ) h( x t ) ⇥ h ( x s ) h( x t ) ⇥ h ( s x ) 32
Generalized Cross Validation GCV = 1 N PN i=1 [yi
ˆ yi]2 1 N2 (N Q d (Q 1))2 33
Pruning Pass • for i in range(num_terms): • best_score =
Infinity • for term in terms: • score = GCV(model \ term) • if score < best_score: • best_score = score • term_to_drop = term • remove term_to_drop from model • models[i] = model.copy() • scores[i] = score • selected_model = models[argmin(scores)] 34
Pruning Pass 1 h( x t ) h( t x
) h( x t ) ⇥ h ( x s ) h( x t ) ⇥ h ( s x ) 35
Final Model [yi ˆ yi]2 d(Q 1))2 y = a0
+ a1 h ( t x ) + a2 h ( x t ) h ( x s ) 36
37
Implementation Goals •Compatible with numpy ecosystem •Fast and reliable •Easy
to maintain 38
39
40
>git clone git://github.com/jcrudy/py-earth.git >cd py-earth >sudo python setup.py install Installation
41
Important Earth Methods •fit(X,y) •transform(X) •predict(X) 42
Simple Example 43
Simple Example 44
45
With Pandas 46
With Patsy 47
Classification 48
Classification 49
50
Future Plans •Documentation •Integrate into scikit-learn •Multiple responses •Sample weights
51
Summary • MARS is a simple but flexible regression method
• py-earth is MARS for Python data stack • Try it! 52
py-earth A far better thing than I have ever done
• https://github.com/jcrudy/py-earth 53