$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyData Meetup Group Presentation
Search
Jason Rudy
May 29, 2013
Programming
2
820
PyData Meetup Group Presentation
Presentation on py-earth to the San Francisco PyData Meetup group on 2013-05-29.
Jason Rudy
May 29, 2013
Tweet
Share
Other Decks in Programming
See All in Programming
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
150
S3 VectorsとStrands Agentsを利用したAgentic RAGシステムの構築
tosuri13
6
350
Microservices rules: What good looks like
cer
PRO
0
1.5k
Deno Tunnel を使ってみた話
kamekyame
0
150
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
730
ZOZOにおけるAI活用の現在 ~モバイルアプリ開発でのAI活用状況と事例~
zozotech
PRO
9
5.8k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
180
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
130
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
130
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
130
tparseでgo testの出力を見やすくする
utgwkk
2
250
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
230
Featured
See All Featured
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
26
The World Runs on Bad Software
bkeepers
PRO
72
12k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
What does AI have to do with Human Rights?
axbom
PRO
0
1.9k
Applied NLP in the Age of Generative AI
inesmontani
PRO
3
1.9k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Code Review Best Practice
trishagee
74
19k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
570
Tell your own story through comics
letsgokoyo
0
740
Are puppies a ranking factor?
jonoalderson
0
2.3k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Transcript
MARS in Python or A Tale of Two Planets 1
Outline • Motivating use case • MARS algorithm • Py-earth
• Examples 2
3
4
M A R S ultivariate daptive egression plines 5
Not MARS •MARSplines •MARegressionSplines •ARES •earth 6
7
HbA1c Age Gender Etc. Cost X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 8
Constraints •Non-monotone relationships among variables •Interactions among predictors •Simple model
9
10
11
Illustration by Yi-Ke Peng 12
13
Python R My Brain Raw data processing Object-relational mapping Feature
extraction Plotting Bootstrapping Normalization Multivariate Adaptive Regression Splines 14
15
16
Regression: The search for f(x) yj = f ( x1j,
. . . , xnj) + ✏j 17
Linear Regression ˆ f ( x ) = a0 +
P X i=1 aixi 18
Multivariate Adaptive Regression Splines ˆ f ( x ) =
a0 + M X m=1 am Km Y k=1 ⇥ skm xv(k,m) tkm ⇤ + 19
Hinge Functions CDify h ( x t ) = [
x t ]+ = ( x t, x > t 0 , x t 20
Multivariate Adaptive Regression Splines ˆ f ( x ) =
a0 + M X m=1 am Km Y k=1 ⇥ skm xv(k,m) tkm ⇤ + 21
y = 1 2h (1 x ) + 1 2
h ( x 1) Multivariate Adaptive Regression Splines 22
Multivariate Adaptive Regression Splines y = h ( x 1)
h ( x 1) + h (1 x ) h (1 x ) 23
Multivariate Adaptive Regression Splines y = 2 + 0 .
1h ( x 1) + h (1 x ) + 3h ( x 1) h (4 x ) 24
Multivariate Example z = h ( 3 x ) +
h ( 3 x ) h (5 y ) 25
Multivariate Adaptive Regression Splines ˆ f ( x ) =
a0 + M X m=1 am Km Y k=1 ⇥ skm xv(k,m) tkm ⇤ + 26
Forward Pass Pruning Pass 27
Forward Pass • while True: • best_err = Infinity •
for each term, predictor, knot candidate: • err = get_squared_error(term, predictor, knot) • if err < best_err: • best_err = err • best_term, best_pred, best_knot = term, predictor, knot • add term pair for best_term, best_pred, best_knot • check stopping conditions 28
Forward Pass 1 Start Iteration 1 Iteration 2 h( x
t ) h( t x ) h( x t ) ⇥ h ( x s ) h( x t ) ⇥ h ( s x ) 29
Forward Pass • while True: • best_err = Infinity •
for each term, predictor, knot candidate: • err = get_squared_error(term, predictor, knot) • if err < best_err: • best_err = err • best_term, best_pred, best_knot = term, predictor, knot • add term pair for best_term, best_pred, best_knot • check stopping conditions 30
O N2P3 31
Forward Pass 1 Start Iteration 1 Iteration 2 h( x
t ) h( t x ) h( x t ) ⇥ h ( x s ) h( x t ) ⇥ h ( s x ) 32
Generalized Cross Validation GCV = 1 N PN i=1 [yi
ˆ yi]2 1 N2 (N Q d (Q 1))2 33
Pruning Pass • for i in range(num_terms): • best_score =
Infinity • for term in terms: • score = GCV(model \ term) • if score < best_score: • best_score = score • term_to_drop = term • remove term_to_drop from model • models[i] = model.copy() • scores[i] = score • selected_model = models[argmin(scores)] 34
Pruning Pass 1 h( x t ) h( t x
) h( x t ) ⇥ h ( x s ) h( x t ) ⇥ h ( s x ) 35
Final Model [yi ˆ yi]2 d(Q 1))2 y = a0
+ a1 h ( t x ) + a2 h ( x t ) h ( x s ) 36
37
Implementation Goals •Compatible with numpy ecosystem •Fast and reliable •Easy
to maintain 38
39
40
>git clone git://github.com/jcrudy/py-earth.git >cd py-earth >sudo python setup.py install Installation
41
Important Earth Methods •fit(X,y) •transform(X) •predict(X) 42
Simple Example 43
Simple Example 44
45
With Pandas 46
With Patsy 47
Classification 48
Classification 49
50
Future Plans •Documentation •Integrate into scikit-learn •Multiple responses •Sample weights
51
Summary • MARS is a simple but flexible regression method
• py-earth is MARS for Python data stack • Try it! 52
py-earth A far better thing than I have ever done
• https://github.com/jcrudy/py-earth 53