Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自転車盗難推測Botの開発
Search
Kenji Kawanobe
January 15, 2020
0
22
自転車盗難推測Botの開発
主に以下の技術を、用いた自転車盗難推測Botの開発についてまとめたスライドです。
- LINE API
- Python(Dhango/numpy/scipy)
- Heroku
Kenji Kawanobe
January 15, 2020
Tweet
Share
More Decks by Kenji Kawanobe
See All by Kenji Kawanobe
Nuxt.jsとFirebaseで個人開発した話
kenji7157
0
140
「こわくない」Vuetifyで始めるOSSコントリビュート
kenji7157
1
230
Development of LINEBot for predicting bicycle theft using open data!!
kenji7157
0
140
Featured
See All Featured
The untapped power of vector embeddings
frankvandijk
1
1.5k
Typedesign – Prime Four
hannesfritz
42
2.9k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.8k
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
190
Darren the Foodie - Storyboard
khoart
PRO
1
2.1k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
74
Rails Girls Zürich Keynote
gr2m
95
14k
Designing for Timeless Needs
cassininazir
0
110
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
390
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
81
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
66
Transcript
ࣗసं౪ਪଌ#PUͷ։ൃ גࣜձࣾຊγεςϜٕݚ ᬒɹݡೋ
ɾࣗసंΛఀΊ͍ͨॴ͕౪͞Εͳ͍ॴͰ͋Δ͔ ɹఆ͢ΔࣄΛతͱͨ͠-*/&#PUͷ։ൃɻ ɾఆʹɺΦʔϓϯσʔλ ݝࣗసं౪σʔλ ͱ ɹ-*/&͔Βऔಘ͢Δར༻ऀใΛ༻ɻ ɾఆͷࢦඪͱͯ͠ɹ҆શείΞΛఆٛɻ ֓ཁ
σϞ
None
҆શείΞ ҆શείΞ
҆શείΞ ౪ඃͷಛ େ͖͍ খ͍͞ ࣅ͍ͯͳ͍ ࣅ͍ͯΔ
҆શείΞ ౪ඃͷಛ େ͖͍ খ͍͞ ࣅ͍ͯͳ͍ ࣅ͍ͯΔ ҆શ
҆શείΞ ౪ඃͷಛ େ͖͍ খ͍͞ ࣅ͍ͯͳ͍ ࣅ͍ͯΔ ةݥ ҆શ
҆શείΞ ౪ඃͷಛ େ͖͍ খ͍͞ ࣅ͍ͯͳ͍ ࣅ͍ͯΔ ةݥ ҆શ
ฏʹݝͰ֬ೝͨ͠൜ࡑൃੜใ
݅ͷඃใ
݅ͷඃใ ɾࢢொଜίʔυ ɾൃੜʢࢢொଜɾொஸ·Ͱʣ ɾൃੜ݄ ɾൃੜ࣌ࠁ ɾඃऀͷྸ ɾඃऀͷ৬ۀ খɾதɾߴɾେɾͦͷଞ ɾࢪৣঢ়ଶ
ʜFUD
݅ͷඃใ ՄࢹԽ
None
None
ྸɾ৬ۀผൃੜ݅
ྸɾ৬ۀผൃੜ݅ ɾࡀࡀͷ౪ඃ͕ଟ͍ ɾࡀࡀͷ౪ඃ͕গͳ͍
None
༵ɾ࣌ؒଳผൃੜ݅
༵ɾ࣌ؒଳผൃੜ݅
༵ɾ࣌ؒଳผൃੜ݅ ɾ௨ֶ௨ۈ࣌ؒ·ͨؼ࣌ؒ ɾಛʹ༵ۚ
౪ඃͷಛ ྸɿɹɹ ৬ۀɿɹɹߴߍੜɺେֶੜ ࣌ؒଳɿɹd࣌ ༵ɿɹɹ༵ۚ ൃੜ݄ɿɹ݄
ࣅ͍ͯͳ͍ ࣅ͍ͯΔ ౪ඃͷಛ
ਓͷඃใ ਓͷར༻ऀใ ࣅ͍ͯͳ͍ ࣅ͍ͯΔ ౪ඃͷಛ
ਓͷඃใ ਓͷར༻ऀใ ࣅ͍ͯͳ͍ ࣅ͍ͯΔ ౪ඃͷಛ ҆શείΞ
ϚϋϥϊϏεڑ
ҙͷ͕ɺσʔλ܈͔ΒͲΕ͚ͩΕ͍ͯΔ͔Λࣔ͢ ϚϋϥϊϏεڑ ҙͷ σʔλ܈
ར༻ऀใ͕ɺաڈͷඃใʹͲΕ͚ͩΕ͍ͯΔ͔Խʹ࣮ݱ ར༻ऀใ աڈͷඃใ ϚϋϥϊϏεڑ
ར༻ऀใ͕ɺաڈͷඃใʹͲΕ͚ͩࣅ͍ͯΔ͔ԽΛ࣮ݱ ར༻ऀใ աڈͷඃใ ϚϋϥϊϏεڑ
աڈͷඃใͱར༻ऀใ͔Β ࢉग़͞ΕΔϚϋϥϊϏεڑ ҆શείΞ
҆ શ ε ί Ξ աڈͷ݅ͷ౪ඃ
҆ શ ε ί Ξ աڈͷ݅ͷ౪ඃ ҆શείΞ͕͍౪͕݅ଟ͍ಛʹࣅ͍ͯΔ ࡀͷ௨ֶ࣌ؒɹ͔ͭɹ༵ۚ
҆ શ ε ί Ξ աڈͷ݅ͷ౪ඃ ҆શείΞ͕ߴ͍౪͕݅ଟ͍ಛʹࣅ͍ͯͳ͍ ࡀͷඃใͳͲ
None
౪ඃͷಛ
౪ඃͷಛ
౪ඃͷಛ
ߟ ՝ ཱ֬ͱͯ͠౪༧ଌΛͰ͖͍ͯͳ͍ ࣗసंͰҠಈͰ͖ΔൣғͰείΞ͍ͨͯ͠มΘΒͳ͍ վળ ౪·Εͳ͔ͬͨใͷऩू पลࢪઃͳͲ౪ʹؔΘΓͦ͏ͳಛྔͷ୳ࡧ
ߟ ՝ ཱ֬ͱͯ͠౪༧ଌΛͰ͖͍ͯͳ͍ ࣗసंͰҠಈͰ͖ΔൣғͰείΞ͍ͨͯ͠มΘΒͳ͍ վળ ౪·Εͳ͔ͬͨใͷऩू पลࢪઃͳͲ౪ʹؔΘΓͦ͏ͳಛྔͷ୳ࡧ ౪Λਪଌ͢Δ߹ʹ͓͍ͯඞཁͳใ͕ ΦʔϓϯσʔλΛͬͯΈͯΘ͔ͬͨ
Ҿ༻ɿݝ࢈ۀΠϊϕʔγϣϯਪਐڠٞձ৴भ̞̩όϨʔߏྩݩ ݄̕ IUUQTXXXQSFGOBHBOPMHKQTFSWJDFTIJOTIV@JUWBMMFZEPDVNFOUTTIJOTIV@JUWBMMFZ@[FOUBJQEG ࢀর
ࣗసं౪ਪଌ#PUͷ։ൃ
ิࢿྉ
Жɿσʔλ܈1ͷฏۉϕΫτϧ Єɿσʔλ܈1ͷڞࢄߦྻ %ɿҙͷͷϚϋϥϊϏεڑ pi ϚϋϥϊϏεڑ
" # ҙͷ͕ɺσʔλ܈͔ΒͲΕ͚ͩΕ͍ͯΔ͔Λࣔ͢ ϚϋϥϊϏεڑ
" # ҙͷ͕ɺσʔλ܈͔ΒͲΕ͚ͩΕ͍ͯΔ͔Λࣔ͢ ϚϋϥϊϏεڑ
ॏ৺͔Βͷී௨ͷڑ"ͷํ͕େ͖͍ " #
σʔλ܈ͱͷڑͱ͍͏؍ͰΈΔͱ"ͷํ͕ద߹͍ͯ͠Δ " #
ॏ৺͔ΒͷϚϋϥϊϏεڑ#ͷํ͕େ͖͍ " #
يಓ্ϚϋϥϊϏεڑ͕Ұఆ Ξχϝʔγϣϯ༗ " #
σʔλ܈ͷ<ಛ> όϥπΩ Λߟྀͯ͠ॏ৺͔ΒͷڑΛࢉग़ " # Єɿσʔλ܈1ͷڞࢄߦྻ
Ҿ༻ɿฏ̏̌ࣗసंอ༗࣮ଶʹؔ͢ΔௐࠪใࠂॻΑΓ ɹɹɹ Ұൠࡒஂ๏ਓࣗసं࢈ۀৼڵڠձ
લॲཧ ɾϥϕϧΤϯίʔσΟϯά ɹɾྸ ɹɾ৬ۀ ɹɾࢪৣঢ়ଶ ɾൃੜ࣌ͷ ɹɾ݄ ɹɾ ɹɾ࣌ࠁ ɾࢢொଜίʔυɺൃੜͷԽ
ɹɾҢܦʹม
લॲཧ
શମਤ IFSPLV Φʔϓϯσʔλ
ةݥͱग़ͨΒ
ݱঢ় ࣗసंͰҠಈͰ͖ΔൣғͰ҆શείΞมಈ͠ͳ͍ɻ ͳͥͳΒ ΦʔϓϯσʔλͰऩू͞ΕͨҐஔใͱͯ͠ࢢொଜϨϕϧ ·Ͱ͔͠ಛఆͰ͖͍ͯͳ͍ใ͋ΔͨΊɻ ࢢΛൈ͚ΔΑ͏ͳҠಈΛ͠ͳ͍ͱةݥΛճආͰ͖ͳ͍ɻ σʔλੳͷ؍͔Βͷվળ पลࢪઃͷใߟྀ͢ΔͱɺࣗసंʹΑΔҠಈͰ҆શε ίΞΛมಈͤ͞Δ͜ͱ͕ՄೳʹͳΔɻ
None
Φʔϓϯσʔλͷஶ࡞ݖදه ݝاըৼڵ෦ใࡦ՝ͷଜ༷