Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Dask Distributedによる分散機械学習
Search
Sinhrks
June 28, 2017
4
1.5k
Dask Distributedによる分散機械学習
@PyData Tokyo #13 Lightning Talk
https://pydatatokyo.connpass.com/event/58954/
Sinhrks
June 28, 2017
Tweet
Share
More Decks by Sinhrks
See All by Sinhrks
daskperiment: Reproducibility for Humans
sinhrks
1
390
PythonとApache Arrow
sinhrks
6
1.9k
大規模データの機械学習におけるDaskの活用
sinhrks
10
3.2k
機械学習と解釈可能性
sinhrks
7
5.7k
LIME
sinhrks
2
1.4k
データ分析言語R 1年の振り返り
sinhrks
5
2.5k
pandasでのOSS活動事例と最初の一歩
sinhrks
2
19k
Data processing using pandas and Dask
sinhrks
1
260
pandasでのOSS活動事例
sinhrks
0
780
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
694
190k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Code Reviewing Like a Champion
maltzj
524
40k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Adopting Sorbet at Scale
ufuk
77
9.4k
Navigating Team Friction
lara
187
15k
Six Lessons from altMBA
skipperchong
28
3.9k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
230
We Have a Design System, Now What?
morganepeng
53
7.7k
A better future with KSS
kneath
239
17k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Transcript
Dask DistributedʹΑΔ ࢄػցֶश Masaaki Horikoshi @ ARISE analytics
ࣗݾհ • OSS׆ಈ: • GitHub: https://github.com/sinhrks
Daskͱ • ॊೈͳฒྻɾOut of CoreॲཧϑϨʔϜϫʔΫ • NumPy, pandasޓ(αϒηοτ)ͷσʔλߏΛఏڙ • λεΫಈతͳܭࢉάϥϑͱͯ͠දݱ͞Εɺεέδϡʔ
ϥʹΑͬͯฒྻ࣮ߦ • DaskΛར༻͢Δύοέʔδ(Ұ෦): Airflow
Dask DataFrame • ෳͷpandas DataFramesʹΑΓߏ • ॎʹׂ͞ΕͨDataFrame͝ͱʹॲཧΛฒྻԽ QBOEBT%BUB'SBNF %BTL%BUB'SBNF QBSUJUJPO
EJWJTJPO EJWJTJPO
import pandas as pd df = pd.DataFrame({'X': np.arange(10), 'Y': np.arange(10,
20), 'Z': np.arange(20, 30)}, index=list('abcdefghij')) df import dask.dataframe as dd ddf = dd.from_pandas(df, 2) ddf ߦྻͷ QBOEBT%BUB'SBNFΛ࡞ Dask DataFrame QBSUJUJPO QBSUJUJPO EJWJTJPO EJWJTJPO EJWJTJPO
Blocked Algorithm (߹ܭ) ddf.sum().compute() 4VN 4VN $PODBU 4VN ߹ܭ શମ
࿈݁ ߹ܭ QBSUJUJPO͝ͱ
Dask Distributed • εέδϡʔϥͰͷܭࢉ࣮ߦΛෳϊʔυͰࢄͰ͖Δ • ϨΠςϯγ: λεΫຖͷΦʔόʔϔου1msఔ • WorkerؒͰͷσʔλڞ༗: σʔλసૹWorkerؒͰ࣮ࢪ
• ෳࡶͳεέδϡʔϦϯά: ҙͷܭࢉάϥϑΛ࣮ߦՄ • ہॴੑ: WorkerؒͷσʔλసૹΛͳΔ͘ߦΘͳ͍ %JTUSJCVUFE 8PSLFS %JTUSJCVUFE 8PSLFS %JTUSJCVUFE 4DIFEVMFS %JTUSJCVUFE $MJFOU
Scikit-Learnͷฒྻॲཧ • “n_jobs” ҾͰฒྻ࣮ߦΛࢦఆ • ෦తʹjoblibΛར༻ • Scikit-Learnίϛολத৺ʹ։ൃ • ϊʔυฒྻ
(threading, multiprocessing) from sklearn.model_selection import GridSearchCV grid = GridSearchCV(pipe, cv=3, n_jobs=12, param_grid=param_grid)
Distributed joblib • ϓϥΨϒϧAPI (0.10.0-) • with ϒϩοΫͰ joblib.Parallel ͷطఆόοΫΤϯυΛมߋՄ
• ҙ • scikit-learnʹόϯυϧ͞Ε͍ͯΔjoblibΛ͏ (sklearn.externals.joblib) • ࢄͰ͖ͳ͍߹͋Δ • backendͱͯ͠threading / multiprocessing͕໌ࣔ͞Ε͍ͯΔͷ import distributed.joblib from sklearn.externals.joblib import parallel_backend with parallel_backend('dask.distributed', scheduler_host=‘scheduler-addr:8786’): grid.fit(digits.data, digits.target)
dask-searchcv • Scikit-LearnͷϋΠύʔύϥϝʔλαʔνΛ Dask ޓʹͨ͠ͷ: • GridSearchCVͱRandomizedSearchCVΛαϙʔτ • APIScikit-Learnͱڞ௨ •
Dask Array DataFrameΛೖྗͱͯͤ͠Δ • ಉҰɺಉύϥϝʔλͷֶशثͷ܁Γฦ࣮͠ߦΛආ͚Δ • PipelineॲཧͰ༗༻ ※աڈʹ dklearn ͱͯ͠ެ։͞Ε͍ͯͨύοέʔδͷҰ෦