Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LT大会20191011_MICCAI2019
Search
sskyryo
October 11, 2019
Technology
0
230
LT大会20191011_MICCAI2019
More unlabelled data or label more data? A study on semi-supervised laparoscopic image segmentation
sskyryo
October 11, 2019
Tweet
Share
Other Decks in Technology
See All in Technology
赤煉瓦倉庫勉強会「Databricksを選んだ理由と、絶賛真っ只中のデータ基盤移行体験記」
ivry_presentationmaterials
2
300
AI導入の理想と現実~コストと浸透〜
oprstchn
0
190
What’s new in Android development tools
yanzm
0
130
ビギナーであり続ける/beginning
ikuodanaka
3
710
「良さそう」と「とても良い」の間には 「良さそうだがホンマか」がたくさんある / 2025.07.01 LLM品質Night
smiyawaki0820
1
500
論文紹介:LLMDet (CVPR2025 Highlight)
tattaka
0
300
生成AI時代 文字コードを学ぶ意義を見出せるか?
hrsued
1
800
低レイヤを知りたいPHPerのためのCコンパイラ作成入門 完全版 / Building a C Compiler for PHPers Who Want to Dive into Low-Level Programming - Expanded
tomzoh
4
3.4k
5min GuardDuty Extended Threat Detection EKS
takakuni
0
190
WordPressから ヘッドレスCMSへ! Storyblokへの移行プロセス
nyata
0
430
Beyond Kaniko: Navigating Unprivileged Container Image Creation
f30
0
130
ビズリーチが挑む メトリクスを活用した技術的負債の解消 / dev-productivity-con2025
visional_engineering_and_design
3
6.2k
Featured
See All Featured
Done Done
chrislema
184
16k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
GitHub's CSS Performance
jonrohan
1031
460k
Faster Mobile Websites
deanohume
307
31k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Designing for humans not robots
tammielis
253
25k
Visualization
eitanlees
146
16k
Designing for Performance
lara
610
69k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Unsuck your backbone
ammeep
671
58k
Transcript
More unlabelled data or label more data? A study on
semi- supervised laparoscopic image segmentation @ssky_ryo https://arxiv.org/abs/1908.08035
Overview • 半教師付き学習による腹腔鏡画像のSegmentationの精度評価 • ラベルありデータとラベルなしデータを同時に学習する手法で精度を向上させる • このときラベルありデータをとにかく大量に集めなくても,ラベルなしのデータを大量に 集めるだけで精度が向上する
アノテーションは つらい • アノテーションはつら いっていう話 https://note.mu/nakaizu mi08/n/nb4ac7bddaa54 • アノテーションこそが本 質
https://www.kurusugaw a.jp/annotation-meetup- 20180705/
アノテーションは つらい • アノテーションはつら いっていう話 https://note.mu/nakaizu mi08/n/nb4ac7bddaa54 • アノテーションこそが本 質
https://www.kurusugaw a.jp/annotation-meetup- 20180705/
Method • 半教師付き学習(Semi-supervised Learning)により十分な精度が出るかを検証 • 腹腔鏡による肝臓のSegmentationが対象 • Multi-scale input U-Net
• Mean Teacher Training
Network • Multi-scale input U-Net
Learning • Mean Teacher Training • StudentとTeacherで同じNetwork • ただしそれぞれ異なるノイズを付与する •
TeacherとStudentはハイパーパラメータで 重みをバランスし,各ステップごとにTeacher のほうに更新をEMA(Exponential moving average)で伝搬
Experiment and Dataset • 41994 laparoscopic video frames (4fps) •
13 patients(6: liver resection, 7: liver staging procedures) • Labeled data: 2209 images (manual cotour) • 67, 156, 148, 168, 246, 180, 140, 260, 198, 178, 166, 144, 158 • Original resolution: 1920x540 (black border) • Input resolution: 1660x540 • 13-fold leave-one-out patient-out • Common data augmentation( contrast, brightness adjustment and standardization)
Experiment and Dataset • Different dataset set size • 2%,
10%, 25%, 50%, 100% labeled data sampled (each patient) • 0%, 6.25%, 25%, 100% unlabeled data sampled (each patient)
Results Mean Teacher training のほうが優れた結果
Results Labelデータのサイズによる比較
Result ()内の数字はラベルつきデータのサイズ