Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
メルカリにおける分析環境整備の取り組み
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
nagai shinya
August 19, 2020
8
8.1k
メルカリにおける分析環境整備の取り組み
以下のイベントの発表資料です。
https://forkwell.connpass.com/event/182769/
nagai shinya
August 19, 2020
Tweet
Share
More Decks by nagai shinya
See All by nagai shinya
Analytics Engineeringチームを立ち上げて学んだこと
__hiza__
4
2.3k
1日50万件貯まるクエリのログを活かして、SQLの生成に挑戦している話
__hiza__
7
2.1k
Analytics Engineeringチームの目標管理
__hiza__
71
44k
データ整備の優先順位付けに役立つテクニック
__hiza__
5
3.3k
データマネジメントがちょっと楽になるBigQuery監査ログの使い方
__hiza__
0
5.9k
レガシー化したdata pipelineの廃止
__hiza__
0
1.1k
LookerのDashboardをより柔軟に作る
__hiza__
0
1.6k
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Building Applications with DynamoDB
mza
96
6.9k
Agile that works and the tools we love
rasmusluckow
331
21k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
110
For a Future-Friendly Web
brad_frost
182
10k
A Tale of Four Properties
chriscoyier
162
24k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Code Review Best Practice
trishagee
74
20k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
150
Transcript
1 ϝϧΧϦʹ͓͚ΔੳڥඋͷऔΓΈ גࣜձࣾϝϧΧϦ / JP Data Analyst ӬҪ৳
2 Introduction
3 ! ӬҪ ৳ ! גࣜձࣾϝϧΧϦ / JP ! Data
Analyst ◦ ੳڥͷඋͳͲΛ୲ ࣗݾհ
4 ! ݱঢ় ◦ ͳͥվળʹऔΓΉͷ͔? ! ͋Γ͍ͨ࢟ ◦ վળͷαΠΫϧΛճ͍ͨ͠ɻ !
औΓΈ ◦ ϨΨγʔͳσʔληοτΛഇࢭ͢Δɻ ◦ ͦͷͨΊʹɺۀͱKPIͱج൫ΛηοτͰߟ͑Δɻ ΞδΣϯμ : ϝϧΧϦʹ͓͚Δੳڥͷඋͷࣄྫ
5 ݱঢ় | ͳͥվળʹऔΓΉͷ͔?
6 ! ج൫ ◦ BigQuery + Looker ! ن ◦
ΫΤϦ࣮ߦϢʔβʔ 700ਓҎ্/݄ ◦ ࢀর͞Ε͍ͯΔςʔϒϧ 100Ҏ্/݄ ◦ Analyst, PdM, ML, CS, ͳͲ ϝϧΧϦʹ͓͚Δσʔλͷར༻ঢ়گ
7 ! ଟ͘ͷਓ͕σʔλΛۀʹ͍ͬͯΔɻ ! ੳڥͷඋ → ·ͩ·ͩෆेɻ ! σʔλج൫Λվળ͢Δࣄ͕ɺੜ࢈ੑͷվળʹܨ͕Δɻ ϑΣʔζతʹɺ্ཱͪ͛ɺීٴɺͱ͍͏ΑΓӡ༻ͷ՝͕େ͖͍ɻ
ͳͥվળʹऔΓΉͷ͔?
8 ͋Γ͍ͨ࢟ | վળͷαΠΫϧΛճ͍ͨ͠
9 ͚͍ͨ͜͞ͱ → ෛͷαΠΫϧ ᶃ վળʹऔΓͳ͍ ᶅ վળʹ͑Δ ͕࣌ؒݮΔ ᶄ
ݱঢ়ҡ͕࣋ ͡Θ͡ΘେมʹͳΔ
10 Γ͍ͨ͜ͱ → վળͷαΠΫϧΛճ͢ ᶃ վળʹऔΓΉ ᶄ ݱঢ়ҡ͕࣋ ͪΐͬͱָʹͳΔ ᶅ
վળʹ͑Δ ͕࣌ؒ૿͑Δ
11 Γ͍ͨ͜ͱ → վળͷαΠΫϧΛճ͢ ᶃ վળʹऔΓΉ ᶄ ݱঢ়ҡ͕࣋ ͪΐͬͱָʹͳΔ ᶅ
վળʹ͑Δ ͕࣌ؒ૿͑Δ ᶆ ेͳ༨༟͕Ͱ͖Ε ɹ ɹ ߈ΊͷվળͰ͖Δ
12 Γ͍ͨ͜ͱ → վળͷαΠΫϧΛճ͢ ᶃ վળʹऔΓΉ ᶄ ݱঢ়ҡ͕࣋ ͪΐͬͱָʹͳΔ ᶅ
վળʹ͑Δ ͕࣌ؒ૿͑Δ ᶆ ेͳ༨༟͕Ͱ͖Ε ɹ ɹ ߈ΊͷվળͰ͖Δ ࠓɺऔΓΜͰ͍Δͷ͜͜
13 औΓΈ | ϨΨγʔͳσʔληοτΛഇࢭ͢Δ
14 2ͭͷpipeline ݩςʔϒϧ ੳςʔϒϧ(৽) ੳςʔϒϧ(ϨΨγʔ) BigQuery Production Production͔ΒBigQueryʹσʔ λΛίϐʔ Production͔Βͷpipeline͕
2ܥ౷͋Δ ϝϯςφϯείετ͕͔͞Ήɻ ࣈ͕߹Θͳ͘ͳΔɻ
15 ৽pipelineͷยد ݩςʔϒϧ ੳςʔϒϧ(৽) ੳςʔϒϧ(ϨΨγʔ) BigQuery Production ňϨΨγʔpipelineΛഇࢭ ৽pipelineʹยد͍ͤͨ͠ʼn
͔͠͠ɺϨΨγʔ͔Βܭࢉ͍ͯ͠ ΔKPIΛ͍ͬͯΔνʔϜ͕͋Δɻ ϨΨγʔͳpipelineͷॲཧΛ৽ pipelineͰ࠶ݱ͠Α͏ͱ͍͕ͯͨ͠ ग़དྷͳ͔ͬͨɻ
16 ͳͥϨΨγʔͳpipelineͷґଘ͕ΊΒΕͳ͍ͷ͔? → ϨΨγʔͳpipeline͔Βܭࢉ͍ͯ͠ΔKPIΛۀʹͬͯ ͍Δ͔Β ৽pipelineͷยد
17 ࣮ / ۀཁ݅྆໘͔Βཁ݅Λཧ → ຊ࣭తʹ৽pipelineͷσʔλͰସͰ͖ͦ͏ͩͱ໌ ͳͥͦͷKPI͕ඞཁͳͷ͔? ۀཁ݅ͷཧ
18 ! ۀཁ݅ΛݩʹKPIͷఆٛΛݟ͠ → ఆ্ٛϨΨγʔͷґଘΛͳͤͨ͘ɻ KPIͷఆ͔ٛΒݟ͢
19 औΓΈͷϙΠϯτ ج൫ ࢦඪ ۀ ͚ͩ͜͜มߋ͢Δͷ͍͠ ηοτͰߟ͑Δ ج൫ͱۀ ηοτͰߟ͑Δ
20 औΓΈͷൣғΛߜΓࠐΉ ᶃΛࢀরͨ͠Ϣʔβʔ … 200ਓ/݄ ᶄΛࢀরͨ͠Ϣʔβʔ … 2ਓ/݄ ͬͯΔਓͷਓʹ100ഒҎ্ͷࠩ →
ॏཁͳͱ͜Ζ͔Βͬͨํ͕ྑ͍ table Tableผ ࢀরϢʔβʔ (ۙ30) ᶄ ᶃ
21 ·ͱΊ
22 ! ݱঢ় ◦ ͳͥվળʹऔΓΉͷ͔? → ੜ࢈ੑͷվળʹܨ͕Δ ! ͋Γ͍ͨ࢟ ◦
վળͷαΠΫϧΛճ͍ͨ͠ → ࣌ؒͷ࠶ࢿΛଓ͚Δ ! औΓΈ ◦ ϨΨγʔͳσʔληοτΛഇࢭ͢Δɻ ◦ ͦͷͨΊʹɺۀͱKPIͱج൫ΛηοτͰߟ͑Δɻ ·ͱΊ : ϝϧΧϦʹ͓͚Δੳڥͷඋͷࣄྫ