$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Alexander Voronov
Search
Oleksandr Voronov
September 15, 2015
Programming
2
1.2k
Alexander Voronov
Swift: Going Functional
https://youtu.be/Dc9aKhs37BE
Oleksandr Voronov
September 15, 2015
Tweet
Share
More Decks by Oleksandr Voronov
See All by Oleksandr Voronov
Controllable Randomness in Unit Tests
alexandervoronov
1
56
Modularizing your iOS apps
alexandervoronov
0
150
TDD in Real World
alexandervoronov
1
240
Building CLI with Swift
alexandervoronov
1
330
Stanfy MadCode 10: From Java to Kotlin, from Objective-C to Swift
alexandervoronov
0
230
ReactiveCocoa
alexandervoronov
0
170
Other Decks in Programming
See All in Programming
バックエンドエンジニアによる Amebaブログ K8s 基盤への CronJobの導入・運用経験
sunabig
0
160
JETLS.jl ─ A New Language Server for Julia
abap34
1
400
TypeScriptで設計する 堅牢さとUXを両立した非同期ワークフローの実現
moeka__c
6
3k
WebRTC、 綺麗に見るか滑らかに見るか
sublimer
1
160
AIコーディングエージェント(NotebookLM)
kondai24
0
190
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
150
チームをチームにするEM
hitode909
0
330
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.3k
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
38
26k
手が足りない!兼業データエンジニアに必要だったアーキテクチャと立ち回り
zinkosuke
0
680
SwiftUIで本格音ゲー実装してみた
hypebeans
0
370
Full-Cycle Reactivity in Angular: SignalStore mit Signal Forms und Resources
manfredsteyer
PRO
0
140
Featured
See All Featured
Statistics for Hackers
jakevdp
799
230k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
For a Future-Friendly Web
brad_frost
180
10k
How STYLIGHT went responsive
nonsquared
100
6k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Thoughts on Productivity
jonyablonski
73
5k
Faster Mobile Websites
deanohume
310
31k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Typedesign – Prime Four
hannesfritz
42
2.9k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Transcript
Swift Rocks 2! Alexander Voronov iOS Developer @ Stanfy
Swift Going Functional
What is Functional Programming?
Functional Programming
Functional Programming • Higher-order functions
Functional Programming • Higher-order functions • Immutable states & pure
functions
Functional Programming • Higher-order functions • Immutable states & pure
functions • Modularity
Functional Programming • Higher-order functions • Immutable states & pure
functions • Modularity • Types
Swift Power
Swift Power
Swift Power • First Class Functions
Swift Power • First Class Functions • Currying
Swift Power • First Class Functions • Currying • Generics
Swift Power • First Class Functions • Currying • Generics
• Type Inference
Swift Power • First Class Functions • Currying • Generics
• Type Inference • Enums
First Class Functions func add(x: Int) -> Int -> Int
{ return { y in y + x } } let addOne = add(1) addOne(2) // 3
First Class Functions func addTwo(x: Int) -> Int { return
x + 2 } (1...5).map(addTwo) // [3, 4, 5, 6, 7]
Currying func add(a: Int)(b: Int) -> Int { return a
+ b } let addOne = add(1) let xs = 1...5 xs.map(addOne) // [2, 3, 4, 5, 6]
Currying func curry<A, B, C>(f: (A, B) -> C) ->
A -> B -> C { return { a in { b in f(a, b) } } }
Generics func printEach<T: SequenceType>(items: T) { for item in items
{ print(item) } } printEach(1...5) printEach(["one", "two", "three"])
Type Inference let x = 42.0 x.dynamicType // Double x
is Double // true
Type Inference var xs = [1, 5, 2, 4, 3]
xs.sort(<) print(xs) // [1, 2, 3, 4, 5]
Type Inference var xs = [1, 5, 2, 4, 3]
xs.sort(<) print(xs) // [1, 2, 3, 4, 5]
Type Inference let xs = [1, 5, 2, 4, 3]
let ys = xs.sorted(<) print(xs) // [1, 5, 2, 4, 3] print(ys) // [1, 2, 3, 4, 5]
Type Inference let xs = [1, 5, 2, 4, 3]
let ys = xs.sorted(<) print(xs) // [1, 5, 2, 4, 3] print(ys) // [1, 2, 3, 4, 5]
Enumerations enum Fruit: String { case Apple = "apple" case
Banana = "banana" case Cherry = "cherry" } Fruit.Apple.rawValue // "apple"
Enumerations enum ValidationResult { case Valid case NotValid(NSError) }
Enumerations enum MyApi { case xAuth(String, String) case GetUser(Int) }
extension MyApi: MoyaTarget { var baseURL: NSURL { return NSURL(string: "")! } var path: String { switch self { case .xAuth: return "/authorise" case .GetUser(let id): return "/user/\(id)" } } } https://github.com/Moya/Moya
Optionals enum Optional<T> { case None case Some(T) } var
x = 5 x = nil // Error!
Optional Chaining struct Dog { var name: String } struct
Person { var dog: Dog? } let dog = Dog(name: "Dodge") let person = Person(dog: dog) let dogName = person.dog?.name
Optional Chaining struct Dog { var name: String } struct
Person { var dog: Dog? } let dog = Dog(name: "Dodge") let person = Person(dog: dog) let dogName = person.dog?.name Optional Chaining
Functors, Applicatives, Monads
None
Functors, Applicatives, Monads let x = 2 x + 3
// == 5
Functors, Applicatives, Monads let x = 2 x + 3
// == 5 let y = Optional(2)
Functors let y = Optional(2) y + 3 // Error!
// Value of optional type // Optional<Int> not unwrapped
Functors let y = Optional(2) y.map { $0 + 3
} // Optional(5)
Functors func map<U>(f: T -> U) -> U? { switch
self { case .Some(let x): return f(x) case .None: return .None } }
Functors infix operator <^> { associativity left } func <^><T,
U>(f: T -> U, a: T?) -> U? { return a.map(f) }
Functors func <^><T, U>(f: T -> U, a: T?) ->
U? { return a.map(f) } let addOne = { $0 + 1 } addOne <^> Optional(2) // Optional(3)
Applicative func apply<U>(f: (T -> U)?) -> U? { switch
f { case .Some(let someF): return self.map(someF) case .None: return .None } }
Applicatives infix operator <*> { associativity left } func <*><T,
U>(f: (T -> U)?, a: T?) -> U? { return a.apply(f) }
Applicatives infix operator <*> { associativity left } func <*><T,
U>(f: (T -> U)?, a: T?) -> U? { return a.apply(f) } func add(a: Int)(b: Int) -> Int { return a + b }
Applicatives add <^> Optional(2) <*> Optional(3) // Optional(5)
Applicatives add <^> Optional(2) <*> Optional(3) // Optional(5)
Applicatives add <^> Optional(2) <*> Optional(3) // Optional(5) let a
= add <^> Optional(2)
Applicatives add <^> Optional(2) <*> Optional(3) // Optional(5) let a
= add <^> Optional(2)
Applicatives add <^> Optional(2) <*> Optional(3) // Optional(5) let a
= add <^> Optional(2) let a: (b: Int) -> Int?
Monads typealias T = Double let f: T -> T
= { $0 * 2.0 } let g: (T, T) -> T = { $0 / $1 }
Monads typealias T = Double let f: T -> T
= { $0 * 2.0 } let g: (T, T) -> T = { $0 / $1 } f(g(4, 2))
Monads typealias T = Double let f: T -> T
= { $0 * 2.0 } let g: (T, T) -> T = { $0 / $1 } f(g(4, 2)) g: (T, T) -> T?
Monads typealias T = Double let f: T -> T
= { $0 * 2.0 } let g: (T, T) -> T = { $0 / $1 } f(g(4, 2)) g: (T, T) -> T? g(4, 2) >>- { f($0) }
Monads >>- == http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
Monads func flatten<U>(a: U??) -> U? { switch a {
case .Some(let someA): return someA case .None: return .None } }
Monads func flatMap<U>(f: T -> U?) -> U? { return
flatten(map(f)) }
Monads func flatMap<U>(f: T -> U?) -> U? { return
flatten(map(f)) } func map<U>(f: T -> U) -> U?
Monads func flatMap<U>(f: T -> U?) -> U? { return
flatten(map(f)) } func map<U>(f: T -> U) -> U?
Monads func flatMap<U>(f: T -> U?) -> U? { return
flatten(map(f)) } func map<U>(f: T -> U) -> U? func map<U?>(f: T -> U?) -> U??
Monads infix operator >>- { associativity left } func >>-<T,
U>(a: T?, f: T -> U?) -> U? { return a.flatMap(f) }
Monads func half(a: Int) -> Int? { return a %
2 == 0 ? a / 2 : .None }
Monads func half(a: Int) -> Int? { return a %
2 == 0 ? a / 2 : .None } Optional(8) >>- half >>- half // Optional(2)
Monad Laws • Left Identity • Right Identity • Associativity
Left Identity Law let f = { Optional($0 + 1)
} let a = 1 let x = Optional(a) >>- f let y = f(a) x == y
Right Identity Law func create<T>(value: T) -> T? { return
Optional(value) } let x = Optional(1) >>- create let y = Optional(1) x == y
Associativity Law let double = { Optional(2 * $0) }
let triple = { Optional(3 * $0) } let x = Optional(1) >>- double >>- triple let y = Optional(1) >>- { double($0) >>- triple } let z = { Optional(1) >>- double }() >>- triple x == y y == z
Recap Functor map<U>(f: T -> U) -> M<U> Applicative apply<U>(f:
M<(T -> U)>) -> M<U> Monad flatMap<U>(f: T -> M<U>) -> M<U>
Pipes & Railways @ScottWlaschin
Pipes infix operator |> { associativity left } public func
|> <T, U>(x: T, f: T -> U) -> U { return f(x) } let addTwo = { $0 + 2 } let prodThree = { $0 * 3 } 5 |> addTwo |> prodThree |> print // 21
Pipes let transformedX = x |> addTwo |> prodThree |>
increment |> square |> pow VS (pow(square(increment(prodThree(addTwo(x))))))
Railways http://fsharpforfunandprofit.com/posts/recipe-part2/
Argo JSON Parser + Argo Runes
Argo Example extension Model: Decodable { static func decode(json: JSON)
-> Decoded<Model> { return Model.create <^> json <| "id" <*> json <| "room" <*> json <| "guest_name" <*> json <| "status" <*> json <| "label" <*> json <|? "user_comment" <*> json <| ["channel", "label"] <*> json <| "severity" <*> json <|| "epochs" <*> json <|| "body" } }
Argo Example let entities: [Model]? entities = data?.json() >>- {
$0["entities"] } >>- decode
Where Next?
Where Next • Functors, Applicatives and Monads in Pictures •
Railway Oriented Programming • Functional Programming in Swift (Objc.io) • Argo • Swiftz • RxSwift • ReactiveCocoa-3.0 • Haskell, F#, Erlang, Elm
Thanks!
Comments / Questions? @aleks_voronov a-voronov