Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Alexander Voronov
Search
Oleksandr Voronov
September 15, 2015
Programming
2
1.2k
Alexander Voronov
Swift: Going Functional
https://youtu.be/Dc9aKhs37BE
Oleksandr Voronov
September 15, 2015
Tweet
Share
More Decks by Oleksandr Voronov
See All by Oleksandr Voronov
Controllable Randomness in Unit Tests
alexandervoronov
1
60
Modularizing your iOS apps
alexandervoronov
0
150
TDD in Real World
alexandervoronov
1
240
Building CLI with Swift
alexandervoronov
1
330
Stanfy MadCode 10: From Java to Kotlin, from Objective-C to Swift
alexandervoronov
0
240
ReactiveCocoa
alexandervoronov
0
180
Other Decks in Programming
See All in Programming
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
160
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
160
チームをチームにするEM
hitode909
0
440
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
520
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
180
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
640
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
390
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
290
まだ間に合う!Claude Code元年をふりかえる
nogu66
5
930
Deno Tunnel を使ってみた話
kamekyame
0
310
CSC307 Lecture 02
javiergs
PRO
1
740
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
38k
Featured
See All Featured
Tell your own story through comics
letsgokoyo
0
770
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
75
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.5k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
210
Paper Plane (Part 1)
katiecoart
PRO
0
2.8k
A designer walks into a library…
pauljervisheath
210
24k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
530
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
37
Transcript
Swift Rocks 2! Alexander Voronov iOS Developer @ Stanfy
Swift Going Functional
What is Functional Programming?
Functional Programming
Functional Programming • Higher-order functions
Functional Programming • Higher-order functions • Immutable states & pure
functions
Functional Programming • Higher-order functions • Immutable states & pure
functions • Modularity
Functional Programming • Higher-order functions • Immutable states & pure
functions • Modularity • Types
Swift Power
Swift Power
Swift Power • First Class Functions
Swift Power • First Class Functions • Currying
Swift Power • First Class Functions • Currying • Generics
Swift Power • First Class Functions • Currying • Generics
• Type Inference
Swift Power • First Class Functions • Currying • Generics
• Type Inference • Enums
First Class Functions func add(x: Int) -> Int -> Int
{ return { y in y + x } } let addOne = add(1) addOne(2) // 3
First Class Functions func addTwo(x: Int) -> Int { return
x + 2 } (1...5).map(addTwo) // [3, 4, 5, 6, 7]
Currying func add(a: Int)(b: Int) -> Int { return a
+ b } let addOne = add(1) let xs = 1...5 xs.map(addOne) // [2, 3, 4, 5, 6]
Currying func curry<A, B, C>(f: (A, B) -> C) ->
A -> B -> C { return { a in { b in f(a, b) } } }
Generics func printEach<T: SequenceType>(items: T) { for item in items
{ print(item) } } printEach(1...5) printEach(["one", "two", "three"])
Type Inference let x = 42.0 x.dynamicType // Double x
is Double // true
Type Inference var xs = [1, 5, 2, 4, 3]
xs.sort(<) print(xs) // [1, 2, 3, 4, 5]
Type Inference var xs = [1, 5, 2, 4, 3]
xs.sort(<) print(xs) // [1, 2, 3, 4, 5]
Type Inference let xs = [1, 5, 2, 4, 3]
let ys = xs.sorted(<) print(xs) // [1, 5, 2, 4, 3] print(ys) // [1, 2, 3, 4, 5]
Type Inference let xs = [1, 5, 2, 4, 3]
let ys = xs.sorted(<) print(xs) // [1, 5, 2, 4, 3] print(ys) // [1, 2, 3, 4, 5]
Enumerations enum Fruit: String { case Apple = "apple" case
Banana = "banana" case Cherry = "cherry" } Fruit.Apple.rawValue // "apple"
Enumerations enum ValidationResult { case Valid case NotValid(NSError) }
Enumerations enum MyApi { case xAuth(String, String) case GetUser(Int) }
extension MyApi: MoyaTarget { var baseURL: NSURL { return NSURL(string: "")! } var path: String { switch self { case .xAuth: return "/authorise" case .GetUser(let id): return "/user/\(id)" } } } https://github.com/Moya/Moya
Optionals enum Optional<T> { case None case Some(T) } var
x = 5 x = nil // Error!
Optional Chaining struct Dog { var name: String } struct
Person { var dog: Dog? } let dog = Dog(name: "Dodge") let person = Person(dog: dog) let dogName = person.dog?.name
Optional Chaining struct Dog { var name: String } struct
Person { var dog: Dog? } let dog = Dog(name: "Dodge") let person = Person(dog: dog) let dogName = person.dog?.name Optional Chaining
Functors, Applicatives, Monads
None
Functors, Applicatives, Monads let x = 2 x + 3
// == 5
Functors, Applicatives, Monads let x = 2 x + 3
// == 5 let y = Optional(2)
Functors let y = Optional(2) y + 3 // Error!
// Value of optional type // Optional<Int> not unwrapped
Functors let y = Optional(2) y.map { $0 + 3
} // Optional(5)
Functors func map<U>(f: T -> U) -> U? { switch
self { case .Some(let x): return f(x) case .None: return .None } }
Functors infix operator <^> { associativity left } func <^><T,
U>(f: T -> U, a: T?) -> U? { return a.map(f) }
Functors func <^><T, U>(f: T -> U, a: T?) ->
U? { return a.map(f) } let addOne = { $0 + 1 } addOne <^> Optional(2) // Optional(3)
Applicative func apply<U>(f: (T -> U)?) -> U? { switch
f { case .Some(let someF): return self.map(someF) case .None: return .None } }
Applicatives infix operator <*> { associativity left } func <*><T,
U>(f: (T -> U)?, a: T?) -> U? { return a.apply(f) }
Applicatives infix operator <*> { associativity left } func <*><T,
U>(f: (T -> U)?, a: T?) -> U? { return a.apply(f) } func add(a: Int)(b: Int) -> Int { return a + b }
Applicatives add <^> Optional(2) <*> Optional(3) // Optional(5)
Applicatives add <^> Optional(2) <*> Optional(3) // Optional(5)
Applicatives add <^> Optional(2) <*> Optional(3) // Optional(5) let a
= add <^> Optional(2)
Applicatives add <^> Optional(2) <*> Optional(3) // Optional(5) let a
= add <^> Optional(2)
Applicatives add <^> Optional(2) <*> Optional(3) // Optional(5) let a
= add <^> Optional(2) let a: (b: Int) -> Int?
Monads typealias T = Double let f: T -> T
= { $0 * 2.0 } let g: (T, T) -> T = { $0 / $1 }
Monads typealias T = Double let f: T -> T
= { $0 * 2.0 } let g: (T, T) -> T = { $0 / $1 } f(g(4, 2))
Monads typealias T = Double let f: T -> T
= { $0 * 2.0 } let g: (T, T) -> T = { $0 / $1 } f(g(4, 2)) g: (T, T) -> T?
Monads typealias T = Double let f: T -> T
= { $0 * 2.0 } let g: (T, T) -> T = { $0 / $1 } f(g(4, 2)) g: (T, T) -> T? g(4, 2) >>- { f($0) }
Monads >>- == http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
Monads func flatten<U>(a: U??) -> U? { switch a {
case .Some(let someA): return someA case .None: return .None } }
Monads func flatMap<U>(f: T -> U?) -> U? { return
flatten(map(f)) }
Monads func flatMap<U>(f: T -> U?) -> U? { return
flatten(map(f)) } func map<U>(f: T -> U) -> U?
Monads func flatMap<U>(f: T -> U?) -> U? { return
flatten(map(f)) } func map<U>(f: T -> U) -> U?
Monads func flatMap<U>(f: T -> U?) -> U? { return
flatten(map(f)) } func map<U>(f: T -> U) -> U? func map<U?>(f: T -> U?) -> U??
Monads infix operator >>- { associativity left } func >>-<T,
U>(a: T?, f: T -> U?) -> U? { return a.flatMap(f) }
Monads func half(a: Int) -> Int? { return a %
2 == 0 ? a / 2 : .None }
Monads func half(a: Int) -> Int? { return a %
2 == 0 ? a / 2 : .None } Optional(8) >>- half >>- half // Optional(2)
Monad Laws • Left Identity • Right Identity • Associativity
Left Identity Law let f = { Optional($0 + 1)
} let a = 1 let x = Optional(a) >>- f let y = f(a) x == y
Right Identity Law func create<T>(value: T) -> T? { return
Optional(value) } let x = Optional(1) >>- create let y = Optional(1) x == y
Associativity Law let double = { Optional(2 * $0) }
let triple = { Optional(3 * $0) } let x = Optional(1) >>- double >>- triple let y = Optional(1) >>- { double($0) >>- triple } let z = { Optional(1) >>- double }() >>- triple x == y y == z
Recap Functor map<U>(f: T -> U) -> M<U> Applicative apply<U>(f:
M<(T -> U)>) -> M<U> Monad flatMap<U>(f: T -> M<U>) -> M<U>
Pipes & Railways @ScottWlaschin
Pipes infix operator |> { associativity left } public func
|> <T, U>(x: T, f: T -> U) -> U { return f(x) } let addTwo = { $0 + 2 } let prodThree = { $0 * 3 } 5 |> addTwo |> prodThree |> print // 21
Pipes let transformedX = x |> addTwo |> prodThree |>
increment |> square |> pow VS (pow(square(increment(prodThree(addTwo(x))))))
Railways http://fsharpforfunandprofit.com/posts/recipe-part2/
Argo JSON Parser + Argo Runes
Argo Example extension Model: Decodable { static func decode(json: JSON)
-> Decoded<Model> { return Model.create <^> json <| "id" <*> json <| "room" <*> json <| "guest_name" <*> json <| "status" <*> json <| "label" <*> json <|? "user_comment" <*> json <| ["channel", "label"] <*> json <| "severity" <*> json <|| "epochs" <*> json <|| "body" } }
Argo Example let entities: [Model]? entities = data?.json() >>- {
$0["entities"] } >>- decode
Where Next?
Where Next • Functors, Applicatives and Monads in Pictures •
Railway Oriented Programming • Functional Programming in Swift (Objc.io) • Argo • Swiftz • RxSwift • ReactiveCocoa-3.0 • Haskell, F#, Erlang, Elm
Thanks!
Comments / Questions? @aleks_voronov a-voronov