Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Diverse phenomena arise from a single engine: a history lesson from AGN unification

Anna Ho
January 18, 2019
170

Diverse phenomena arise from a single engine: a history lesson from AGN unification

Anna Ho

January 18, 2019
Tweet

More Decks by Anna Ho

Transcript

  1. Diverse Phenomena Arise From a Single Engine: A History Lesson

    From AGN Unification Anna Ho Journal Club | 18 January 2019 1 Image Credit: Cosmovision (led by Dr. Wolfgang Steffen of the Instituto de Astronomia, UNAM, Ensenada, Mexico) for A. Marscher; NRAO/AUI/NSF
  2. 7 Urry (2003) Essential ingredients of an AGN —> zoo

    of phenomena Steep-spectrum quasar Seyfert II ULIRG Seyfert I QSO BL Lac Flat-spectrum quasar Fanaroff-Riley (FR) I radio galaxy FR II
  3. I. INTRODUCTION TO AGN 8 II. CONNECTING OPTICAL ACTIVE NUCLEI

    TO UNIDENTIFIED RADIO SOURCES (1900-1970) “the close correlation between the radio structure and the star with the jet is suggestive and intriguing” - Maarten Schmidt (1963) HST image, credit: ESA/Hubble & NASA
  4. 9 Active optical sources 1) Seyfert (1943): small fraction of

    galaxies have bright nuclei with broad emission lines (Hβ) 4959, 5007 AA (OIII) 4860 AA Spectrum of NGC 1068 2) BL Lac: highly variable star
  5. 10 (Hβ) 4959, 5007 AA (OIII) 4860 AA Pinning down

    radio sources Spectrum of NGC 1068 Active optical sources 1) Seyfert (1943): small fraction of galaxies have bright nuclei with broad emission lines 2) BL Lac: highly variable star
  6. 11 Baade & Minkowski (1954): “[Cygnus A] is an extragalactic

    affair” (Hβ) 4959, 5007 AA (OIII) 4860 AA Pinning down radio sources Schmidt (1963): discovery of quasars (3C 273) Macleod (1968): discovery of radio source coincident with BL Lac Spectrum of NGC 1068 Active optical sources 1) Seyfert (1943): small fraction of galaxies have bright nuclei with broad emission lines 2) BL Lac: highly variable star
  7. I. INTRODUCTION TO AGN 12 II. CONNECTING OPTICAL ACTIVE NUCLEI

    TO UNIDENTIFIED RADIO SOURCES (1900-1970) “relativistic plasma can thus be collimated into two relativistic beams” - Blandford & Rees (1974) III. THE IDEA OF RELATIVISTIC JETS (1974)
  8. Hargrave & Ryle (1974): radio observations of Cygnus A contours

    of brightness temperature at 5 GHz 2500 K 2500 K 104 K HPBW 140 arcsec 80 arcsec
  9. Blandford & Rees (1974): these hot spots could represent the

    lobes of a jet • Active nucleus (engine) • Duration 106-107 years • < 10 pc • Surrounding “cloud” • High pressure (so, cloud size << galaxy size) Model ingredients:
  10. Blandford & Rees (1974): these hot spots could represent the

    lobes of a jet Perley (1984): “The jet and filaments in Cygnus A” image credit NRAO
  11. 16 torus of gas and dust Essential ingredients —> zoo

    of observational classes engine presence of a relativistic jet no radio quiet yes radio loud
  12. I. INTRODUCTION TO AGN 17 II. CONNECTING OPTICAL ACTIVE NUCLEI

    TO UNIDENTIFIED RADIO SOURCES (1900-1970) “This scheme attributes the observed differences…to projection” - Orr & Browne (1982) III. THE IDEA OF RELATIVISTIC JETS (1974) IV. RADIO UNIFICATION: VIEWING ANGLE (1982)
  13. Observed classes of quasars Browne (1982) 10 Jy 1 Jy

    0.1 Jy 0.1 Frequency (GHz) 1 10 compact component (flat index) diffuse component (steep index) • Flat-spectrum (compact) • Steep-spectrum (diffuse)
  14. Unified by viewing angle w.r.t. jet axis (Orr & Browne

    1982) Observed classes of quasars Browne (1982) 10 Jy 1 Jy 0.1 Jy 0.1 Frequency (GHz) 1 10 compact component (flat index) diffuse component (steep index) Steep- spectrum quasar BL Lac Flat-spectrum quasar • Flat-spectrum (compact) • Steep-spectrum (diffuse) • Lorentz factor = 5 (now 10)
  15. 21 torus of gas and dust Essential ingredients —> zoo

    of observational classes engine viewing angle w.r.t. jet axis BL Lac flat-spectrum quasar steep-spectrum quasar on-axis off-axis presence of a relativistic jet no radio quiet yes radio loud
  16. I. INTRODUCTION TO AGN 22 II. CONNECTING OPTICAL ACTIVE NUCLEI

    TO UNIDENTIFIED RADIO SOURCES (1900-1970) “I would like to summarize for you…some things that might happen to the jets as they wend their way through the galaxy.” - Phinney (1982) III. THE IDEA OF RELATIVISTIC JETS (1974) IV. RADIO UNIFICATION: VIEWING ANGLE (1984) V. RADIO UNIFICATION: JET VELOCITY (1982-1995)
  17. Morphological classes of radio galaxies Fanaroff & Riley (1974) FR

    I (bright jet) 3C 31 (Laing 1996) FR II (bright disk) 3C 353 (Swain 1998)
  18. Morphological classes of radio galaxies Phinney (1982), Bicknell (1995) Fanaroff

    & Riley (1974) Differences due to jet deceleration Model ingredients • Relativistic jets on pc scale • FR I decelerate on kpc scale • Declaration due to entrainment FR I (bright jet) 3C 31 (Laing 1996) FR II (bright disk) 3C 353 (Swain 1998)
  19. 25 torus of gas and dust Essential ingredients —> zoo

    of observational classes engine viewing angle w.r.t. jet axis steep-spectrum quasar on-axis off-axis presence of a relativistic jet no radio quiet yes radio loud successful jet choked (“dirty”) jet FR I FR II BL Lac flat-spectrum quasar
  20. 26 Essential ingredients —> zoo of observational classes engine viewing

    angle w.r.t. jet axis steep-spectrum quasar on-axis off-axis radio unification scheme presence of a relativistic jet no radio quiet yes radio loud successful jet choked (“dirty”) jet FR I FR II BL Lac flat-spectrum quasar
  21. I. INTRODUCTION TO AGN 27 II. CONNECTING OPTICAL ACTIVE NUCLEI

    TO UNIDENTIFIED RADIO SOURCES (1900-1970) III. THE IDEA OF RELATIVISTIC JETS (1974) IV. RADIO UNIFICATION: VIEWING ANGLE (1984) V. RADIO UNIFICATION: JET VELOCITY (1982-1995) VI. OPTICAL UNIFICATION: VIEWING ANGLE (1985) “…the appearance of these figures is surprising. They look like the spectra of a Seyfert Type 1 object!” - Antonucci & Miller (1985)
  22. Classes of optical AGN Seyfert I BL > 1000 km/s

    (Hβ) (OIII) He I Hα, NII Wavelength (AA) Seyfert II NL < 1000 km/s
  23. Seyfert I (BL > 1000 km/s) (Hβ) (OIII) He I

    Hα, NII A surprise from spectropolarimetry Seyfert II in polarized light! Antonucci & Miller (1985) Wavelength (AA) NGC 1068
  24. 31 torus of gas and dust Essential ingredients —> zoo

    of observational classes engine viewing angle w.r.t. dusty torus Seyfert I Seyfert II on-axis off-axis viewing angle w.r.t. jet axis BL Lac flat-spectrum quasar steep-spectrum quasar on-axis off-axis radio unification scheme presence of a relativistic jet no radio quiet yes radio loud successful jet choked (“dirty”) jet FR I FR II
  25. 32 torus of gas and dust Essential ingredients —> zoo

    of observational classes engine viewing angle w.r.t. dusty torus Seyfert I Seyfert II on-axis off-axis optical unification scheme viewing angle w.r.t. jet axis BL Lac flat-spectrum quasar steep-spectrum quasar on-axis off-axis radio unification scheme presence of a relativistic jet no radio quiet yes radio loud successful jet choked (“dirty”) jet FR I FR II
  26. I. INTRODUCTION TO AGN 33 II. CONNECTING OPTICAL ACTIVE NUCLEI

    TO UNIDENTIFIED RADIO SOURCES (1900-1970) III. THE IDEA OF RELATIVISTIC JETS (1974) IV. RADIO UNIFICATION: VIEWING ANGLE (1984) V. RADIO UNIFICATION: JET VELOCITY (1982-1995) VI. OPTICAL UNIFICATION: VIEWING ANGLE (1985) “[These IR sources] represent a class of extremely luminous galaxies, emitting as much energy as the most extreme Seyfert galaxies” - Houck et al. (1985) VII. IR UNIFICATION: VIEWING ANGLE (1989)
  27. IRAS sources IRAS Mrk 1014 IRAS 01003-2238 IRAS 08572+3915 IRAS

    12071-0444 Model ingredients (Sanders 1989) • Insight: most quasars have similar IR properties • Dusty torus re-radiates emission from accretion disk Urry (2003) ULIRG
  28. 36 Essential ingredients —> zoo of observational classes engine viewing

    angle w.r.t. dusty torus Seyfert I QSO Seyfert II on-axis off-axis ULIRG OIR unification scheme viewing angle w.r.t. jet axis BL Lac flat-spectrum quasar steep-spectrum quasar on-axis off-axis radio unification scheme presence of a relativistic jet no radio quiet yes radio loud successful jet choked (“dirty”) jet FR I FR II
  29. I. INTRODUCTION TO AGN 37 II. CONNECTING OPTICAL ACTIVE NUCLEI

    TO UNIDENTIFIED RADIO SOURCES (1900-1970) III. THE IDEA OF RELATIVISTIC JETS (1974) IV. RADIO UNIFICATION: VIEWING ANGLE (1984) V. RADIO UNIFICATION: JET VELOCITY (1982-1995) VI. OPTICAL UNIFICATION: VIEWING ANGLE (1985) VII. IR UNIFICATION: VIEWING ANGLE (1989) VIII. CONNECTION TO STELLAR EXPLOSIONS “…we demonstrate that the central engine responsible for long gamma-ray bursts can also trigger a SN Ic-BL” -Barnes et al. (2017)
  30. 38 Urry (2003) Bill Saxton, NRAO/AUI/NSF AGN Stellar explosion •

    Jet —> radio loud • Jet —> radio loud
  31. 39 Urry (2003) Bill Saxton, NRAO/AUI/NSF AGN Stellar explosion •

    Jet —> radio loud • Jet —> radio loud • Radio loud prefer elliptical galaxies, radio quiet prefer spiral galaxies • GRBs and Ic-BL SNe prefer dwarf starburst galaxies, regular Ic SN prefer disk galaxies
  32. 40 Urry (2003) Bill Saxton, NRAO/AUI/NSF AGN Stellar explosion •

    Jet —> radio loud • Jet —> radio loud • No jet —> radio-quiet • No jet —> spherical engines? superluminous SN? • Radio loud prefer elliptical galaxies, radio quiet prefer spiral galaxies • GRBs and Ic-BL SNe prefer dwarf starburst galaxies, regular Ic SN prefer disk galaxies
  33. 41 Urry (2003) Bill Saxton, NRAO/AUI/NSF AGN Stellar explosion •

    Jet —> radio loud • Jet —> radio loud • Successful/unsuccessful jets —> FR I/II • Successful/unsuccessful jets —> dirty fireballs??? • No jet —> radio-quiet • No jet —> spherical engines? superluminous SN? • Radio loud prefer elliptical galaxies, radio quiet prefer spiral galaxies • GRBs and Ic-BL SNe prefer dwarf starburst galaxies, regular Ic SN prefer disk galaxies
  34. 42 Urry (2003) Bill Saxton, NRAO/AUI/NSF AGN Stellar explosion •

    Jet —> radio loud • Jet —> radio loud • Successful/unsuccessful jets —> FR I/II • No jet —> radio-quiet • No jet —> spherical engines? superluminous SN? • Radio loud prefer elliptical galaxies, radio quiet prefer spiral galaxies • GRBs and Ic-BL SNe prefer dwarf starburst galaxies, regular Ic SN prefer disk galaxies • On-axis jet —> BL Lac, flat-spectrum quasar • On-axis jet —> gamma-ray burst (GRB) • Successful/unsuccessful jets —> dirty fireballs???
  35. 43 Urry (2003) Bill Saxton, NRAO/AUI/NSF AGN Stellar explosion •

    Jet —> radio loud • Jet —> radio loud • Successful/unsuccessful jets —> FR I/II • No jet —> radio-quiet • No jet —> spherical engines? superluminous SN? • Radio loud prefer elliptical galaxies, radio quiet prefer spiral galaxies • GRBs and Ic-BL SNe prefer dwarf starburst galaxies, regular Ic SN prefer disk galaxies • On-axis jet —> BL Lac, flat-spectrum quasar • On-axis jet —> gamma-ray burst (GRB) • Off-axis jet —> steep-spectrum quasar • Off-axis jet —> ?? Ic-BL SN? • Successful/unsuccessful jets —> dirty fireballs???
  36. 44 Urry (2003) Bill Saxton, NRAO/AUI/NSF AGN Stellar explosion •

    Jet —> radio loud • Jet —> radio loud • Successful/unsuccessful jets —> FR I/II • No jet —> radio-quiet • No jet —> spherical engines? superluminous SN? • Radio loud prefer elliptical galaxies, radio quiet prefer spiral galaxies • GRBs and Ic-BL SNe prefer dwarf starburst galaxies, regular Ic SN prefer disk galaxies • On-axis jet —> BL Lac, flat-spectrum quasar • On-axis jet —> gamma-ray burst (GRB) • Off-axis jet —> steep-spectrum quasar • Off-axis jet —> ?? Ic-BL SN? • Obscuration by dense material —> Seyfert I/II, ULIRG • Obscuration by dense material —> AT2018cow?? • Successful/unsuccessful jets —> dirty fireballs???
  37. 45 Essential ingredients —> zoo of observational classes engine viewing

    angle w.r.t. dusty torus aspherical dense CSM on-axis? off-axis? viewing angle w.r.t. jet axis on-axis off-axis presence of a relativistic jet no yes radio loud successful jet choked (“dirty”) jet FR II GRB FR I LLGRB? Dirty fireball? radio quiet superluminous supernova? GRB BL Lac flat spectrum quasar Ic-BL SN steep-spectrum quasar optical unification scheme radio unification scheme ?? Seyfert I QSO oblique angle? AT2018cow?? ?? Seyfert II ULIRG
  38. 46 NGC 1068 (M77) has an active galactic nucleus Imanishi

    (2018) Image Credit: ALMA (ESO/NAOJ/NRAO), Imanishi et al., NASA/ESA Hubble Space Telescope and A. van der Hoeven 46
  39. 47 NGC 1068 (M77) has an active galactic nucleus 47

    Credit: ALMA (ESO/NAOJ/NRAO), Imanishi et al. Imanishi (2018)