Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ミクシィ/AI・ロボット事業部の取り組み
Search
cfiken
July 03, 2019
Technology
2
990
ミクシィ/AI・ロボット事業部の取り組み
2019/07/03 第1回 NLP/CV最先端勉強会
cfiken
July 03, 2019
Tweet
Share
More Decks by cfiken
See All by cfiken
[2023/11/18] Knowledge-Augmented Language Model Verification @LLM x 検索論文読み会
cfiken
1
510
ACL2020 対話システムの評価指標 [nlpaper.challenge 2020/10/18]
cfiken
1
1.9k
[2020/05/15] nlpaper.challenge BERT応用勉強会 テキスト生成の評価 × BERT
cfiken
3
8.5k
[ACL2019網羅的サーベイ報告会資料] Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study
cfiken
1
1.5k
Class Imbalanced に対するアプローチ Striking the Right Balance with Uncertainty @CVPR2019網羅的サーベイ報告会
cfiken
1
930
nlpaper.challenge 外部知識に基づく応答生成サーベイ
cfiken
6
1.6k
Other Decks in Technology
See All in Technology
LTに影響を受けてテンプレリポジトリを作った話
hol1kgmg
0
310
LLMで構造化出力の成功率をグンと上げる方法
keisuketakiguchi
0
500
マルチプロダクト×マルチテナントを支えるモジュラモノリスを中心としたアソビューのアーキテクチャ
disc99
1
320
AWS re:Inforce 2025 re:Cap Update Pickup & AWS Control Tower の運用における考慮ポイント
htan
1
210
✨敗北解法コレクション✨〜Expertだった頃に足りなかった知識と技術〜
nanachi
1
560
反脆弱性(アンチフラジャイル)とデータ基盤構築
cuebic9bic
3
170
Jamf Connect ZTNAとMDMで実現! 金融ベンチャーにおける「デバイストラスト」実例と軌跡 / Kyash Device Trust
rela1470
0
150
2025-07-31: GitHub Copilot Agent mode at Vibe Coding Cafe (15min)
chomado
2
380
MCP認可の現在地と自律型エージェント対応に向けた課題 / MCP Authorization Today and Challenges to Support Autonomous Agents
yokawasa
5
1.8k
Strands Agents & Bedrock AgentCoreを1分でおさらい
minorun365
PRO
6
240
Nx × AI によるモノレポ活用 〜コードジェネレーター編〜
puku0x
0
350
Google Cloud で学ぶデータエンジニアリング入門 2025年版 #GoogleCloudNext / 20250805
kazaneya
PRO
17
3.3k
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Navigating Team Friction
lara
188
15k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
2.9k
Building Adaptive Systems
keathley
43
2.7k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
880
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Facilitating Awesome Meetings
lara
54
6.5k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Transcript
ミクシィでの取り組み紹介 2019/07/03 株式会社ミクシィ AI・ロボット事業部 Kentaro Nakanishi
自己紹介 Kentaro Nakanishi @cfiken ミクシィ: AI・ロボット事業部 昨年4月まで iOS エンジニア (マッチングアプリ
Poiboy) 今は AI 関連新規事業 最近は nlpaper と Kaggle と ゲームを両立させたい
ミクシィグループ • XFLAG ◦ モンスト ◦ ファイトリーグ • みてね •
SNS mixi • minimo • スマートヘルス • ...
ミクシィグループでの機械学習に関する取り組み • XFLAG での ゲームAI (強化学習など) ◦ https://speakerdeck.com/mixi_engineers/machine-learning-in-fight-league • みてねでの画像/動画処理
◦ https://mixi.connpass.com/event/115664/ • mixi での不適切コンテンツ検出 ◦ https://medium.com/mixi-developers/mixi-20190110-d1cde81cf37c • その他いろいろ
AI・ロボット事業部??
AI・ロボット事業部での取り組み • 雑談対話ロボットの制作 • 特に対話部分にフォーカス • ハードも作ります • 新規事業としてやっているのでプロダクトについてはあ んまり話せません
AI・ロボット事業部での取り組み • PO 合わせて 12人のチームで開発 • エンジニア: 7人 ◦ 1人はまだ
Deep ヒヨコ (私) ◦ 1人は Deep 系スーパーマン (私目線) • 日本語対話データも自社で収集 ◦ 100万オーダーのターン
We are hiring!!!!!!!!
AI・ロボット事業部での取り組み • 対話モデル変遷の紹介 • 今後の課題 10分しかないのでサササッと
対話モデル変遷の紹介
対話モデル変遷 • Seq2Seq + Attention • HRED / VHRED •
Transformer • Alphabot • Policy Network (Transformer) on BERT • Policy Network XL • ???
Seq2Seq + Attention 割愛
HRED / VHRED • 対話として一問一答では成立しないため、過去の N回の 対話履歴を元に返答を行いたい • HRED (Hierarchical
Recurrent Encoder Decoder) ◦ A. Sordoni et al., 2015 • 長いコンテキストを入力可能に
HRED / VHRED • 学習が難しい: 過学習しがち, 学習時間がかなりかかる • VHRED は誰も学習が成功しなかった...
Transformer • RNN は学習に時間がかかる/難しい • Attention is All You Need
◦ A. Vaswani et al., 2017 • 実用レベルだったので RNN から乗り換え • RNN と比べて圧倒的に学習が早い ◦ PDCA 高速化 / GPUコスト減 • 会話精度も体感的には向上
Transformer (Hierarchical) • 対話モデルでは HRED のように Hierarchical に設計
Alphabot • もっと先を見据えて良い方向へ持っていく対話をしたい • AlphaGo の枠組みをヒントに設計 ◦ N ターン先まで見て良さそうな返答を選ぶ •
Policy, Reward, Alpha の3つのネットワークからなる ◦ Policy: 返答を生成 ◦ Reward: 返答を評価 ◦ Alpha: どの発言が将来的に良い報酬となるかを近似
Alphabot Policy と Reward をトレー ニングデータから学習 Policy: 発話を生成 Reward: 発話を評価
bot 同士で対話させ、 MCTS で対話を探索/評価
Alphabot MCTS の探索は時間がかか るので推論時は厳しい Alpha で MCTS の結果を近 似するようなモデルを学習 推論的には
Policy + Alpha で出力を生成 & 決める
Policy Network (Transformer) on BERT • Alphabot の枠組みは良いが、まだまだ Policy が弱い
• データ数が多くないため名詞などの知識理解が弱点 • BERT を用いることで改善
Policy Network XL • モデルが過去 N 発話分しか見ることができない ◦ コンテキスト理解に限界 ◦
内容のない対話が続くと何の話か分からなくなる • Transformer の Encoder への入力の一部を Memory Module として、対話の中で更新・保存する • Transformer-XL から着想
Policy Network XL • N (=3) 発話以前の文脈も取得可能に • Hierarchical 構造がなくなりシンプルに
• 何を記憶するかも一緒に学習
その他: with Condition • Condition として外部状況を取り込めるようなモデルを いろいろ実験中 ◦ どこで入れるか (decoder,
encoder, ...) ◦ どのように入れるか (binary, embedding, ...) ◦ 何を入れるか (ユーザ情報, 天気, 友人情報, ...)
??? • 他にも色々なモデルで試行錯誤 • 外部情報 (ユーザ情報, 今日の天気, 季節, ...) の活用
• GAN など生成モデルアプローチも実験 • ターン制でない対話 • Encoder-Decoder でない枠組み㊙も試し中 • 興味がある方は懇親会で
今後の課題
今後の課題 • まだ課題だらけ ◦ 返答生成のクオリティ ◦ モデルの評価 ◦ 記憶 ◦
レスポンスタイム ◦ 多様性 ◦ 企画意図の実現 • 興味がある方は(略)
ありがとうございました
None