$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Google_QA__Solution___Review__1_.pdf
Search
Draconda
February 28, 2020
3
2.7k
Google_QA__Solution___Review__1_.pdf
Draconda
February 28, 2020
Tweet
Share
Featured
See All Featured
A better future with KSS
kneath
240
18k
[SF Ruby Conf 2025] Rails X
palkan
0
500
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
BBQ
matthewcrist
89
9.9k
Documentation Writing (for coders)
carmenintech
76
5.2k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Faster Mobile Websites
deanohume
310
31k
Optimizing for Happiness
mojombo
379
70k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Automating Front-end Workflow
addyosmani
1371
200k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Transcript
Google QA Solution & Review
Agenda ・Model Architecture ・Post Processing ・Augmentation ・Other Tips & Trials
Model Architecture ・3 models in 1 model ・MLE Layer ・Ensemble
of Bert/XLNet
Post Process ・Threshold Optimization ・Test N for range(200) & Select
Best CV
Augmentation ・Back Translation ・TextBlob
+1. Flex Module ・Change MaxLen for Token selection Max Len
== Max Len1 + Max Len2 == 512 - 3
+1. MLE Module ・Almost Same ・Ensemble is also well VS
+α. Bert Pretraining (MLM) ・Training on External Dataset
+α. Distillation ・Pseudo label for External Dataset
+α. Other Models ・Bert-Large, XLNet-Large ・RoBerta, RoBerta-Large ・ALBert, ALBert-Large ・GPT2,
XLM, etc...
+α. Pseudo Labeling ・1 Opinion about PSeudo Labeling
+α. Draco PP V2 ・For 12 columns which (Max -
Min) < 1 ・Invert when evaluate
+α. Post Process+1 ・for N in range(200) Optimize R ・Scipy,
NN, etc...
Thanks !!