Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GPT_LangChain_LlamaIndexを活用しDB作業の生産性10倍を考える
Search
神谷築
June 12, 2023
Programming
0
170
GPT_LangChain_LlamaIndexを活用しDB作業の生産性10倍を考える
LangChainとLhamaIndexの簡易解説
ツールを利用しているpythonプログラムの解説
デモ(いい感じに完成していたら紹介します。。。w)
神谷築
June 12, 2023
Tweet
Share
More Decks by 神谷築
See All by 神谷築
Backlogで開発プロセスを可視化した話
eg_kamiya
0
170
GPTを使って行ったプレスリリースまでのプロセス
eg_kamiya
0
100
Other Decks in Programming
See All in Programming
なぜ「共通化」を考え、失敗を繰り返すのか
rinchoku
1
510
Azure AI Foundryではじめてのマルチエージェントワークフロー
seosoft
0
130
datadog dash 2025 LLM observability for reliability and stability
ivry_presentationmaterials
0
110
アンドパッドの Go 勉強会「 gopher 会」とその内容の紹介
andpad
0
260
GoのGenericsによるslice操作との付き合い方
syumai
3
690
XSLTで作るBrainfuck処理系
makki_d
0
210
エンジニア向け採用ピッチ資料
inusan
0
160
Create a website using Spatial Web
akkeylab
0
300
PHPで始める振る舞い駆動開発(Behaviour-Driven Development)
ohmori_yusuke
2
190
Systèmes distribués, pour le meilleur et pour le pire - BreizhCamp 2025 - Conférence
slecache
0
110
C++20 射影変換
faithandbrave
0
530
XP, Testing and ninja testing
m_seki
3
190
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Optimizing for Happiness
mojombo
379
70k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
GraphQLとの向き合い方2022年版
quramy
48
14k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Faster Mobile Websites
deanohume
307
31k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Typedesign – Prime Four
hannesfritz
42
2.7k
Code Reviewing Like a Champion
maltzj
524
40k
Transcript
GPT/LangChain/LlamaIndexを活用しDB 作業の生産性10倍を考える GPT Okinawa
自己紹介 • 〜2011:飲食業 • 2012年:株式会社プロトソリューション • 2018年:株式会社EC-GAIN • 2020年:CTO就任 •
現在 :開発組織構築奮闘中 神谷 築(カミヤ キズク) 1991年:31歳 4人の子持ち お酒/ラーメン大好き
GPT Okinawa Mission GPTを使って開発生産性を10倍にしたい
Slack
今日の流れ - LangChain/LhamaIndex解説 - LT - ディスカッション
GPT の課題 最新情報や独自の情報を持っていない
GPT の課題に対するアプローチ - Fine -tuning - In-Context Learning
Fine-tuning モデル自体にデータを与えて再学習させる方法
In-Context Learning 情報を先に与えておいて、GPTにアプローチする方法
今回の話 In-Context Learning
使うツール LangChain LhamaIndex
LangChainとは LangChainは、GPT-3のような大規模言語モデル( Large Language Model: LLM)を利用してサービスの開発 をしたいときに便利に使えるライブラリです。 例えば、ChatGPT のような AI
とチャットできるサービスを開発する場合を考えます。 OpenAI が提供する GPT-3 の API だけでも非常にシンプルで使いやすいので、 GPT-3 のみを使用した AI チャットサービスを開発 するには LangChain は不要かもしれません。 しかし、例えば、開発したいチャットアプリの要件に、「最新の検 索結果の内容も踏まえて AIに返答をさせたい」といった条件が追加された場合には LangChain が有効です。 LangChain には、「検索エンジンでの検索結果を API で返してくれるサービス」である SerpApi と LLM を組み 合わせる機能があります。 この機能を使うことで、よくある「最新の検索結果の内容も踏まえて AI に返答をさせ たい」という要望を数行のコードで実装できます。 このように、LangChain は LLM を使ってサービスを開発したいときのよくある機能をまとめて提供してくれてい るライブラリです。 引用:https://book.st-hakky.com/docs/langcain-intro/
LangChain要約 GPTを簡単に扱えるようにする 便利なやつ
LhamaIndexとは GPTのようなLLMにプライベートなデータを補強するために、in-context learningという 枠組みがあり、これを行うには データの取り込み インデックス化が必要 ということです。そこで、このデータの取り込み、インデックス化、またそのインデックスを 利用して質問(クエリ)に回答するところまでの機能を一気通貫で提供してくれるのが LlamaIndex、となります。 引用:https://dev.classmethod.jp/articles/llamaindex-overview/
LhamaIndex要約 in-context learning を簡単にできるやつ
プログラムのステップ - テキストを分割 - embeddingとretrieverの作成 - gptの実行
テキストを分割 def file_text_split (file_path): # テキストローダーの初期化 loader = TextLoader(file_path) #
ドキュメントの読みこみ documents = loader.load() # チャンクサイズの制限を下回るまで再帰的に分割するテキストスプリッターのインポート from langchain.text_splitter import RecursiveCharacterTextSplitter # テキストスプリッターの初期化 text_splitter = RecursiveCharacterTextSplitter( chunk_size=400, chunk_overlap=0) # テキストをチャンクに分割 return text_splitter.split_documents(documents)
embeddingとretrieverの作成 # retriever作成 def create_retriever (text_split): # 使用するエンベッディングをインポート from langchain.embeddings
import OpenAIEmbeddings # エンベッディングの初期化 embeddings = OpenAIEmbeddings() # vectorstore をインポート (ここでは Chroma を使用) from langchain.vectorstores import Chroma # ベクターストアにドキュメントとエンベッディングを格納 db = Chroma.from_documents(text_split , embeddings) return db.as_retriever()
gptの実行 def execute_gpt(prompt, text_retriever): from langchain.chains import RetrievalQA # LLM
ラッパーの初期化 llm = OpenAI(model_name="gpt-4", temperature=0, max_tokens=5000) # チェーンを作り、それを使って質問に答える qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=text_retriever) return qa.run(prompt)
実行プログラム if __name__ == '__main__': texts = file_text_split( 'dump.sql') retriever
= create_retriever(texts) answer = execute_gpt( ''' select_items の最新10件を取得するSQLを作成してください。 select_items にはambassadorsテーブルの情報も含めてください。 ''', retriever) print(answer)
実行結果 SELECT s.*, a.display_name, a.profile_image, a.select_item_count, a.affiliate_type FROM select_items s
JOIN ambassadors a ON s.ambassador_id = a.id ORDER BY s.created_at DESC LIMIT 10;
感想 おおお!
読み込ませたdump.sql データベースのdumpデータを食わせた。 185,426文字のデータ
テキスト分割について 全てのテキストを一回で処理する事が制限されておりできない。 意味のある単位で、テキストをある程度分割する必要がある。 今回は適当に分割してみた。
embeddingとretrieverについて embeddingとは文字をベクトル表現に変換すること 雑に言うと文字が下記のようにマシンが処理しやすい形で管理されるようになる [0.002369190799072385, -0.004423773847520351] retrieverとは、情報を検索して言語モデルに情報を渡せるやつ。 今回だと、GPTの言語モデルにsql dumpのデータを検索して渡している。 正直、内部の詳細はわかっていない。
まとめ - In-Context Learningの実装は難しくない(テキストデータが必要) - ChatGPTには投げられない量のデータを扱える
最後に でかい独自のテキストデータと GPTを簡単に組み合わせる事ができる 色々な活用方法がありますよね!
以上!