Upgrade to Pro — share decks privately, control downloads, hide ads and more …

機器學習超入門

 機器學習超入門

介紹Naive Bayes演算法

Hai Feng Kao

May 18, 2018
Tweet

More Decks by Hai Feng Kao

Other Decks in Programming

Transcript

  1. Bayes • 反:是反社會⼈人格 • 嘴:會說話 • ⽯石:鐵⽯石⼼心腸 • P(反、嘴、⽯石) •

    = P(反|嘴、⽯石) *P(嘴、⽯石) • = P(嘴、⽯石|反)*P(反) • = P(嘴|⽯石、反)*P(⽯石|反)*P(反) Naive Bayes • 假設反和嘴是獨立事件 • P(反、嘴、⽯石) • = P(嘴|反)*P(⽯石|反)*P(反) • 我們想知道⼀一個會說話⼜又鐵⽯石⼼心 腸的⼈人是不是反社會⼈人格 • P(反|嘴、⽯石) • = P(嘴|反)*P(⽯石|反)*P(反) / P(嘴、⽯石)
  2. 範例例 • P(⽯石) = P(⽯石|正常⼈人) + P(⽯石|反) • =0.01 *

    0.96 + 0.99 * 0.04 • = 0.0492 • P(反|⽯石) • = P(⽯石|反)*P(反) /P(⽯石) • = 0.99 * 0.04 / 0.0492 • = 0.804
  3. 範例例 • 假設有30%的正常⼈人也很會說話 • P(正常⼈人|嘴、⽯石) • = P(嘴|正)*P(⽯石|正)*P(正) / P(嘴、

    ⽯石) • = 0.3 * 0.01 * 0.96 / P(嘴、⽯石) • 因為P(正常⼈人|嘴、⽯石) + P(反|嘴、⽯石) = 1.0 • P(嘴、⽯石) = 0.3 * 0.01 * 0.96 + 0.99 * 0.99 * 0.04 = 0.042 • P(反|嘴、⽯石) = 0.99 * 0.99 * 0.04 / 0.042 = 0.91