Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Migrating to Kotlin State & Shared Flows
Search
Mohit S
June 03, 2022
Programming
1
790
Migrating to Kotlin State & Shared Flows
Mohit S
June 03, 2022
Tweet
Share
More Decks by Mohit S
See All by Mohit S
Guide to Improving Compose Performance
heyitsmohit
0
240
Building Shared UIs across Platforms with Compose
heyitsmohit
1
640
Building Multiplatform Apps with Compose
heyitsmohit
2
510
Building StateFlows with Jetpack Compose
heyitsmohit
6
1.9k
Building Android Testing Infrastructure
heyitsmohit
1
500
Using Square Workflow for Android & iOS
heyitsmohit
1
430
Building Android Infrastructure Teams at Scale
heyitsmohit
3
330
Strategies for Migrating to Jetpack Compose
heyitsmohit
2
570
Challenges of Building Kotlin Multiplatform Libraries
heyitsmohit
1
440
Other Decks in Programming
See All in Programming
Deep Dive into Kotlin Flow
jmatsu
1
300
プロポーザル駆動学習 / Proposal-Driven Learning
mackey0225
2
1.2k
Kiroの仕様駆動開発から見えてきたAIコーディングとの正しい付き合い方
clshinji
1
210
Swift Updates - Learn Languages 2025
koher
2
470
ProxyによるWindow間RPC機構の構築
syumai
3
1.1k
AI時代のUIはどこへ行く?
yusukebe
16
8.7k
テストカバレッジ100%を10年続けて得られた学びと品質
mottyzzz
2
560
CJK and Unicode From a PHP Committer
youkidearitai
PRO
0
110
基礎から学ぶ大画面対応(Learning Large-Screen Support from the Ground Up)
tomoya0x00
0
410
Vue・React マルチプロダクト開発を支える Vite
andpad
0
110
2025 年のコーディングエージェントの現在地とエンジニアの仕事の変化について
azukiazusa1
22
11k
MCPとデザインシステムに立脚したデザインと実装の融合
yukukotani
4
1.4k
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Designing for humans not robots
tammielis
253
25k
The Cult of Friendly URLs
andyhume
79
6.6k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Optimizing for Happiness
mojombo
379
70k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
For a Future-Friendly Web
brad_frost
180
9.9k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
Mohit Sarveiya Migrating to Kotlin State & Shared Flows @heyitsmohit
Migrating to Kotlin State & Shared Flows • State &
Shared Flow APIs • Migrating from broadcast channels • Flow Sharing Strategies • Manage Backpressure
Cold vs Hot Flows
What is a cold stream? • Flow completes • Triggers
same code for every new subscriber
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { // 2, 3, 4 }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... } flow.collect { ... }
Cold Flows val flow = flowOf(1, 2, 3) .map
{ it + 1 } flow.collect { ... } flow.collect { // 2, 3, 4 }
What is a hot stream? • Never completes normally •
Exists independently of subscribers.
Hot Streams State Flow Shared Flow
State Flow • Different ways to create state flows •
Emit, collect • Conflation
State Flow View View Model
State Flow View View Model State
State Flow sealed class UiState { object Loading: UiState()
data class Success(…): UiState() data class Error(…): UiState() }
State Flow sealed class UiState { object Loading: UiState()
data class Success(…): UiState() data class Error(…): UiState() }
State Flow sealed class UiState { object Loading: UiState()
data class Success(…): UiState() data class Error(…): UiState() }
State Flow val stateFlow = MutableStateFlow()
val stateFlow = MutableStateFlow( UiState.Loading ) State Flow
State Flow val stateFlow = MutableStateFlow( . .. ) stateFlow.emit(
UIState.Success( ... ) )
State Flow val stateFlow = MutableStateFlow( . .. ) stateFlow.value
= UIState.Success( ... )
State Flow val stateFlow = MutableStateFlow( . .. ) stateFlow.update
{ UIState.Success( .. . ) }
State Flow val stateFlow = MutableStateFlow( . .. ) stateFlow.collect
{ .. . } stateFlow.collect { .. . } Latest value is received
State Flow Conflation val stateFlow = MutableStateFlow( . .. )
stateFlow.value = UIState.Success( ... ) stateFlow.value = UIState.Error( .. . ) Conflate
State Flow Conflation val stateFlow = MutableStateFlow( . .. )
stateFlow.value = UIState.Success( ... ) stateFlow.value = UIState.Error( .. . ) stateFlow.collect { .. . } Error
State Flow View View Model State
State Flow State Flow Flow 1 Flow 2 Flow 3
Combined Flow
Flow Combine 1 A 1A Flow 1 Flow 2 Combined
Flow Combine 1 2 A 1A 2A Flow 1 Flow
2 Combined
Flow Combine 1 2 A 1A 2A Flow 1 Flow
2 Combined B 2B
val stateFlow = MutableStateFlow(UIState.Loading) flow1.combine(flow2) { a, b -
> } State Flow
val stateFlow = MutableStateFlow(UIState.Loading) flow1.combine(flow2) { a, b -
> combineItems(a, b) } State Flow
val stateFlow = MutableStateFlow(UIState.Loading) flow1.combine(flow2) { a, b -
> combineItems(a, b) }.collect { stateFlow.emit(it) } State Flow
Flow Marbles
State Flow View View Model State
Cash App - Molecule
Molecule Purpose Build a StateFlow using Jetpack Compose
Approach View Molecule Presenter (Composable) Events
Presenter @Composable fun Presenter(eventFlow: Flow<Event>): UiState { val
event by eventFlow.collectAsState(null) return if (event = = null) { UiState.Loading } else { UiState.Data(…) } }
Presenter @Composable fun Presenter(eventFlow: Flow<Event>): UiState { val
event by eventFlow.collectAsState(null) return if (event = = null) { UiState.Loading } else { UiState.Data(…) } }
Presenter @Composable fun Presenter(eventFlow: Flow<Event>): UiState { val
event by eventFlow.collectAsState(null) return if (event = = null) { UiState.Loading } else { UiState.Data(…) } }
Setup Molecule Presenter (Composable)
Setup Molecule Presenter (Composable) StateFlow
Launching Molecule val scope = CoroutineScope(Dispatchers.Main) val models: StateFlow<UsersModel> =
scope.launchMolecule { userPresenter(postsFlow, likesFlow) }
Launching Molecule val flow: StateFlow<UiState> = scope.launchMolecule { presenter(eventFlow) }
Setup View Molecule
Setup View View Model
View Model class MyViewModel: ViewModel() { val stateFlow
= moleculeScope.launchMolecule { val event by eventFlow.collectAsState(null) return if (event == null) { UiState.Loading } else { UiState.Success(…) } }
Learn More https: / / youtu.be/rUpZSZedoHI
State Flow • Different ways to create state flows •
Emit, collect
Shared Flow
Shared Flow
Shared Flow Consumer 1 Consumer 2
Shared Flow Consumer 1 Consumer 2
Shared Flow Consumer 1 Consumer 2 Event Event
Shared Flow Consumer 1 Consumer 2 Replay Replay
Shared Flow Buffer
Shared Flow val flow = MutableSharedFlow<String>()
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.collect {
} }
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.emit("Event
1") } launch { flow.collect { } }
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.emit("Event
1") } launch { flow.collect { } } Event 1
Shared Flow val flow = MutableSharedFlow<String>() launch { flow.emit("Event
1”) } launch { delay(2000); flow.collect { } }
Shared Flow val flow = MutableSharedFlow<String>() launch { delay(2000);
flow.collect { } } launch { flow.emit("Event 1”) }
Shared Flow val flow = MutableSharedFlow<String>() launch { delay(2000);
flow.collect { } } launch { flow.emit("Event 1”) }
Shared Flow val flow = MutableSharedFlow<String>() launch { delay(2000);
flow.collect { } } No value is received launch { flow.emit("Event 1”) }
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) launch
{ flow.emit("Event 1”) } launch { delay(2000); flow.collect { } }
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) launch
{ delay(2000); flow.collect { } } launch { flow.emit("Event 1”) } Event 1
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) Shared Flow
does not complete normally launch { flow.collect { } }
Cold Flows val flow = flowOf(1, 2, 3) flow
.onCompletion { } .collect { ... } Flow completes normally
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) val job
= launch { flow.collect { } } job.cancel()
Shared Flow val flow = MutableSharedFlow<String>(replay = 1) val job
= launch { flow.onCompletion { }.collect { } } job.cancel() Flow completes exceptionally
Shared Flow • Setup • Replay and emit • Cancellation
Broadcast Channel vs Shared Flow
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
val channel = BroadcastChannel<Int>(10) Broadcast Channel
val channel = BroadcastChannel<Int>(10) channel.send( ... ) Broadcast Channel
val channel = BroadcastChannel<Int>(10) channel.send( ... ) channel.close() Broadcast Channel
val flow = MutableSharedFlow() flow.emit( ... ) Shared Flow
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
val flow = MutableSharedFlow(replay = 2) flow.emit( ... ) Shared
Flow
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
val channel = BroadcastChannel<Int>(capacity = 10) channel.send( ... ) Broadcast
Channel
val flow = MutableSharedFlow( replay = 2, extraBufferCapacity = 10
) flow.emit( ... ) Shared Flow
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
Broadcast Channel Shared Flow
val channel = BroadcastChannel<Int>(capacity) val flow = MutableSharedFlow<String>(extraBufferCapacity)
channel.send( ... ) channel.trySend( .. . ) flow.emit( ... )
flow.tryEmit( ... )
Broadcast Channel Shared Flow Channel APIs Replay Buffer Closed
Flow Sharing Strategies
Cold Flow Hot Flow Convert
State Flow State Flow Flow 1 Flow 2 Flow 3
Combined Flow
Creating State & Shared Flows • shareIn • stateIn
Sharing Policies • While Subscribed • Eagerly • Lazily
Sharing Policies flow.shareIn( )
Sharing Policies flow.shareIn( externalScope, )
Sharing Policies flow.shareIn( externalScope, replay = 1, )
Sharing Policies flow.shareIn( externalScope, replay = 1, started = SharingStarted.WhileSubscribed()
)
Sharing Policies val sharedFlow = flow.shareIn( externalScope, replay = 1,
started = SharingStarted.WhileSubscribed() )
Properties • Active as long as external scope is alive
• Remains as long as there are collectors.
Properties Active as long as external scope is alive externalScope.launch
{ sharedFlow.collect { } }
flow.shareIn( externalScope, replay = 1, started = SharingStarted.WhileSubscribed() ) Properties
Active as long as external scope is alive
Properties Active as long as external scope is alive externalScope.cancel()
externalScope.launch { sharedFlow.collect { } }
Properties Active as long as external scope is alive externalScope.cancel()
externalScope.launch { sharedFlow.collect { } } Complete Exceptionally
Properties Active as long as there are collectors.
Properties Active as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…)
Properties Active as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job = launch { sharedFlow.onCompletion { }.collect { } }
Properties Active as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job = launch { sharedFlow.onCompletion { }.collect { } } job.cancel()
Properties Active as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job = launch { sharedFlow.onCompletion { }.collect { } } job.cancel()
Properties Active as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job = launch { sharedFlow.onCompletion { }.collect { } } job.cancel()
Properties Active as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) val job1 = launch { sharedFlow.collect { } } val job2 = launch { sharedFlow.collect { } }
Properties Active as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) job1.cancel() val job2 = launch { sharedFlow.collect { } }
Properties Active as long as there are collectors. val sharedFlow
= flow.onCompletion { }.shareIn(…) job1.cancel() val job2 = launch { sharedFlow.collect { } } Remain Active
Properties • Active as long as external scope is alive
• Active as long as there are collectors.
Sharing Policies • While Subscribed • Eagerly • Lazily
Eagerly flow.shareIn( externalScope, replay = 1, started = SharingStarted.Eagerly() )
Eagerly Start producer eagerly flow .onStart { println("ON START") }
.shareIn( ... started = SharingStarted.Eagerly)
Eagerly Start producer eagerly flow .onStart { println("ON START") }
.shareIn( ... started = SharingStarted.Eagerly)
Eagerly Start producer eagerly flow .onStart { println("ON START") }
.shareIn( ... started = SharingStarted.Eagerly) // ON START
Eagerly Start producer eagerly
Sharing Policies • While Subscribed • Eagerly • Lazily
Lazily Start sharing after the first subscriber appears
Lazily flow.shareIn( externalScope, replay = 1, started = SharingStarted.Lazily )
Lazily flow .onStart { println("ON START") } .shareIn(…,started = SharingStarted.Lazily)
Lazily flow .onStart { println("ON START") } .shareIn(…,started = SharingStarted.Lazily)
launch { sharedFlow.collect { } }
Lazily flow .onStart { println("ON START") } .shareIn(…,started = SharingStarted.Lazily)
launch { sharedFlow.collect { } } // ON START
Lazily Start sharing after the first subscriber appears
Sharing Policies • While Subscribed • Active while there are
active subscribers. • Eagerly • Start producer eagerly and never stop • Lazily • Start after the first subscriber appears and never stop
Manage Backpressure
Shared Flow Buffer
Shared Flow Producer Consumer
Shared Flow Producer Consumer Generating events fast
Shared Flow Producer Consumer Listening to events with
delay
Shared Flow Producer Consumer
Shared Flow Producer Consumer
Shared Flow Producer Consumer What happens when it is
full?
Buffering Overflow Strategies • Suspend • Drop oldest • Drop
latest
Shared Flow Producer Consumer Suspend
Buffering Overflow Strategies val flow = MutableSharedFlow<String>( extraBufferCapacity = 2,
onBufferOverflow = BufferOverflow.SUSPEND ) Buffer + Replay Count
Buffering Overflow Strategies val flow = MutableSharedFlow<String>( extraBufferCapacity = 2,
onBufferOverflow = BufferOverflow.SUSPEND )
Buffering Overflow Strategies launch { flow.emit("Event 1") flow.emit("Event 2") flow.emit("Event
3") } Suspend
Buffering Overflow Strategies • Suspend • Drop oldest • Drop
latest
Shared Flow Producer Consumer Drop Oldest
Shared Flow Producer Consumer Drop latest
Buffering Overflow Strategies • Suspend • Drop oldest • Drop
latest
Kotlin State & Shared Flows in Action • State &
Shared Flow APIs • Migrating from broadcast channels • Flow Sharing Strategies • Manage Backpressure
Thank You! www.codingwithmohit.com @heyitsmohit