Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DeepNLP_BackPropagation_Rnn_and_Cnn
Search
izuna385
July 02, 2018
Science
0
180
DeepNLP_BackPropagation_Rnn_and_Cnn
深層学習による自然言語処理 2.5から2.9まで
izuna385
July 02, 2018
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
430
Firebase-React-App
izuna385
0
260
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.8k
UseCase of Entity Linking
izuna385
0
600
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
670
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
910
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
90
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
580
Other Decks in Science
See All in Science
2025-05-31-pycon_italia
sofievl
0
110
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
630
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
440
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
240
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
300
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
140
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
170
高校生就活へのDA導入の提案
shunyanoda
0
6.1k
機械学習 - DBSCAN
trycycle
PRO
0
1.4k
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
900
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Building Adaptive Systems
keathley
44
2.9k
Rails Girls Zürich Keynote
gr2m
95
14k
Statistics for Hackers
jakevdp
799
230k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Music & Morning Musume
bryan
46
7k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Site-Speed That Sticks
csswizardry
13
1k
Transcript
5 . 1 2
• : D !(#) 1 ∇!(#) • L 1 )
) ( 1 S G G 1 & '()*+, = .(/ 012 .(⋯ .(/ 2 '()*+, + 5(2)))) 62 67 68 69 /(:) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ;2 ;7 /(:<2) = − 1 = = + 1
. . ! ℎ($) ℎ(&) ℎ(') (($) ((&) ((') ℎ(')=
( ' ( & ( $ ! *+(,) *- = *+(,) *.(/) 0 *.(/) *.(1) 0 *.(1) *- •
. . ! ℎ($) ℎ(&) '($) '(&)
. .
None
(
.( )
( )
2'+ )NN 2 #) 0%&1&-" (3*, )
.( !/$→ → Residual Connection, Batch Nomalization( ) ! Loss func ! Loss func
: Residual Connection –– F(x) (→-!()) F(x) + x
→ & " - Identity Mapping ' : -*&%,+' ./$ # Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016. . .
. . (2.33) (2.34)
0 1 . 2 C2 2 " 3 2 3
2 ) 2 2 ( 3 23 2 !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -"#$ = /(!"#$ ) -" -"&$ %" !" M I NR 2 '*+, O L '() : input P / L !" = '*+, 2 !"#$ + '() %" ,, L
2 . 3 !" #$% &% !" #$' !" #$(
!% #$% !% #$' !% #$( !' #$% !' #$' !' #$( !( #$% !( #$' !( #$( &' &( )% )' )(
2 . 3 !" #$% &% !" #$' !" #$(
!% #$% !% #$' !% #$( !' #$% !' #$' !' #$( !( #$% !( #$' !( #$( &' &( )% )' )(
2 . 3 !" #$% &% !" #$' !" #$(
!% #$% !% #$' !% #$( !' #$% !' #$' !' #$( !( #$% !( #$' !( #$( &' &( )% )' )(
2 . 3 !" #$% &% !" #$' !" #$(
!% #$% !% #$' !% #$( !' #$% !' #$' !' #$( !( #$% !( #$' !( #$( &' &( )% )' )( • 23 !* # 1
: !"#$ !%& '( )( … … )*
'* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/
. - •
) (
8 99 2 :9.8 9 9 6 5 3 2
2 5 2 28 79 8 3 9 1 56 2 59 7 /0-
-5 1 02 1 25 58 8 ./ 8 .2
0 8
22/1 444 1 1 - 2 3--.-.3-. 11
http://deeplearning.stanford.edu/wiki/index .php/Feature_extraction_using_convolution
/885 6 0: 6. 5 5
RNN Vanishing/Exploding Gradient : !"#$ !%&
'( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/