Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DeepNLP_BackPropagation_Rnn_and_Cnn
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
izuna385
July 02, 2018
Science
0
190
DeepNLP_BackPropagation_Rnn_and_Cnn
深層学習による自然言語処理 2.5から2.9まで
izuna385
July 02, 2018
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
440
Firebase-React-App
izuna385
0
260
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.8k
UseCase of Entity Linking
izuna385
0
610
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
690
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
910
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.2k
Entity representation with relational attention
izuna385
0
95
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
590
Other Decks in Science
See All in Science
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
160
Algorithmic Aspects of Quiver Representations
tasusu
0
190
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
200
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
470
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.9k
凸最適化からDC最適化まで
santana_hammer
1
350
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
530
機械学習 - DBSCAN
trycycle
PRO
0
1.5k
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
210
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
170
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
660
Featured
See All Featured
For a Future-Friendly Web
brad_frost
182
10k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.6k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
How to make the Groovebox
asonas
2
1.9k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
54
YesSQL, Process and Tooling at Scale
rocio
174
15k
GraphQLとの向き合い方2022年版
quramy
50
14k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
93
Transcript
5 . 1 2
• : D !(#) 1 ∇!(#) • L 1 )
) ( 1 S G G 1 & '()*+, = .(/ 012 .(⋯ .(/ 2 '()*+, + 5(2)))) 62 67 68 69 /(:) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ;2 ;7 /(:<2) = − 1 = = + 1
. . ! ℎ($) ℎ(&) ℎ(') (($) ((&) ((') ℎ(')=
( ' ( & ( $ ! *+(,) *- = *+(,) *.(/) 0 *.(/) *.(1) 0 *.(1) *- •
. . ! ℎ($) ℎ(&) '($) '(&)
. .
None
(
.( )
( )
2'+ )NN 2 #) 0%&1&-" (3*, )
.( !/$→ → Residual Connection, Batch Nomalization( ) ! Loss func ! Loss func
: Residual Connection –– F(x) (→-!()) F(x) + x
→ & " - Identity Mapping ' : -*&%,+' ./$ # Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016. . .
. . (2.33) (2.34)
0 1 . 2 C2 2 " 3 2 3
2 ) 2 2 ( 3 23 2 !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -"#$ = /(!"#$ ) -" -"&$ %" !" M I NR 2 '*+, O L '() : input P / L !" = '*+, 2 !"#$ + '() %" ,, L
2 . 3 !" #$% &% !" #$' !" #$(
!% #$% !% #$' !% #$( !' #$% !' #$' !' #$( !( #$% !( #$' !( #$( &' &( )% )' )(
2 . 3 !" #$% &% !" #$' !" #$(
!% #$% !% #$' !% #$( !' #$% !' #$' !' #$( !( #$% !( #$' !( #$( &' &( )% )' )(
2 . 3 !" #$% &% !" #$' !" #$(
!% #$% !% #$' !% #$( !' #$% !' #$' !' #$( !( #$% !( #$' !( #$( &' &( )% )' )(
2 . 3 !" #$% &% !" #$' !" #$(
!% #$% !% #$' !% #$( !' #$% !' #$' !' #$( !( #$% !( #$' !( #$( &' &( )% )' )( • 23 !* # 1
: !"#$ !%& '( )( … … )*
'* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/
. - •
) (
8 99 2 :9.8 9 9 6 5 3 2
2 5 2 28 79 8 3 9 1 56 2 59 7 /0-
-5 1 02 1 25 58 8 ./ 8 .2
0 8
22/1 444 1 1 - 2 3--.-.3-. 11
http://deeplearning.stanford.edu/wiki/index .php/Feature_extraction_using_convolution
/885 6 0: 6. 5 5
RNN Vanishing/Exploding Gradient : !"#$ !%&
'( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/