Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Julie Delon (Université Paris-Cité, France) Opt...

Jia-Jie Zhu
March 27, 2024
140

Julie Delon (Université Paris-Cité, France) Optimal Transport with Invariances between Gaussian Mixture Models

WORKSHOP ON OPTIMAL TRANSPORT
FROM THEORY TO APPLICATIONS
INTERFACING DYNAMICAL SYSTEMS, OPTIMIZATION, AND MACHINE LEARNING
Venue: Humboldt University of Berlin, Dorotheenstraße 24

Berlin, Germany. March 11th - 15th, 2024

Jia-Jie Zhu

March 27, 2024
Tweet

More Decks by Jia-Jie Zhu

Transcript

  1. Optimal transport with invariances between Gaussian mixture models Antoine Salmona,

    Julie Delon, Agnès Desolneux Humboldt University of Berlin, OT Workshop, March 2024
  2. GMMd (K) = {⋃ } π,m,Σ Gaussian mixture models [Xia

    et al, Neurips 2022] Image completion Semantic segmentation [Liang et al, Neurips 2022] Rs2 µ1 <latexit sha1_base64="Jgcy+ObGrS0Ov4dNvH/FdhxrE5s=">AAARbXictVhZb9NAEJ5ylnAlIJ5AyJBW9IUojiihbxVRJfoAKlXbVD2IHGebWvUlH23TqD+CV/hl/AN44i8wO/Ymae143aRklXg8s983x1522q5p+EG1+mvmxs1bt+/cnb1XuP/g4aPHxdKTLd8JPZ1t6o7peNttzWemYbPNwAhMtu16TLPaJmu2jxrc3jxmnm849kbQc9m+pXVt48DQtQBVzT0rbKmK0iqWq5VafUldXFKqlUW19r5eV9RKlT4DoQzxZ80pzS7AHnTAAR1CsICBDQHKJmjgY9sFFargom4f+qjzUDLIzuAcCogNsRfDHhpqj/C3i3e7sdbGe87pE1pHLyZ+PUQqMI8YB/t5KHNvCtlDYubacdx94uSx9fDajrks1AZwiFoZTvTMi+O5BHAAHygHA3NyScOz02OWkKrCI1dGsgqQwUUdlzto91DWCSnqrBDGp9x5bTWy/6aeXMvv9bhvCH8oymGbz9EKlJeNHCdUX4sytjGePuq/YPz8KqrQxtYn7bkEdxnJ4zdzYTdg6xLWQ6kf67Ox66nxrktxa9jSkGtS5E4qbkeKaxCOS8NZ36dx7dCcaUgZmmMq3JQiV8diV3Og+fz3B9Ef07yMdAblYefI3UGcYLg4ysIm41hJ4KPKrwyw8xloHnM3dZYJi4zBopWexiAscgYNTscwRJbsCkSRjrI48W7Cufh8ErvrCUbE2U28WiT7g0yv5muY82S+jJHZ0cHeBzT/DWKM+FyUXo18hfZ8sKe9naLxdeXFkXp4v46yg9ppOHkuHu3B6bUL4orx3T6U1Pks7tumPaEzOMMcWp1n0nHSMRKTzrzII8Ox5SOg0+kqbPk4fBpbMT95DKcoz43wZvtoXbAn+wp+3uakUVnxE0WSR1jy4Fkin/E7MM/0kGLs024sy2cYh8gnO6IuIrsp9W1IPXVpDtu5a8c9WRN54uvkKp58xBqxJ34eRPvLN6iRp8gmGyd/7Dj7OcbZR8lLxQtLNt6lZ7P0CIa2fBzJ2XbVOTXqMd8qOaY9Jq16kSUPfpKVP+S/7nXPeaev5DC+/F6jSK/L9x72S8t9uhPtf7TrOWlX4PM1nKzjRkg8h6SflPJn0F4mvifFn2bi5U9U0TvetDOL0b6e/xSY7LRJrtas5x02OGvSYy20iuXEPw5JYatWUasV9eu78vLH+N+IWXgOr2EBVKjDMnzCt7NNeg//Dj/gZ/Fv6VnpRell1PXGTIx5Chc+pTf/AJqJWCA=</latexit> <latexit sha1_base64="Jgcy+ObGrS0Ov4dNvH/FdhxrE5s=">AAARbXictVhZb9NAEJ5ylnAlIJ5AyJBW9IUojiihbxVRJfoAKlXbVD2IHGebWvUlH23TqD+CV/hl/AN44i8wO/Ymae143aRklXg8s983x1522q5p+EG1+mvmxs1bt+/cnb1XuP/g4aPHxdKTLd8JPZ1t6o7peNttzWemYbPNwAhMtu16TLPaJmu2jxrc3jxmnm849kbQc9m+pXVt48DQtQBVzT0rbKmK0iqWq5VafUldXFKqlUW19r5eV9RKlT4DoQzxZ80pzS7AHnTAAR1CsICBDQHKJmjgY9sFFargom4f+qjzUDLIzuAcCogNsRfDHhpqj/C3i3e7sdbGe87pE1pHLyZ+PUQqMI8YB/t5KHNvCtlDYubacdx94uSx9fDajrks1AZwiFoZTvTMi+O5BHAAHygHA3NyScOz02OWkKrCI1dGsgqQwUUdlzto91DWCSnqrBDGp9x5bTWy/6aeXMvv9bhvCH8oymGbz9EKlJeNHCdUX4sytjGePuq/YPz8KqrQxtYn7bkEdxnJ4zdzYTdg6xLWQ6kf67Ox66nxrktxa9jSkGtS5E4qbkeKaxCOS8NZ36dx7dCcaUgZmmMq3JQiV8diV3Og+fz3B9Ef07yMdAblYefI3UGcYLg4ysIm41hJ4KPKrwyw8xloHnM3dZYJi4zBopWexiAscgYNTscwRJbsCkSRjrI48W7Cufh8ErvrCUbE2U28WiT7g0yv5muY82S+jJHZ0cHeBzT/DWKM+FyUXo18hfZ8sKe9naLxdeXFkXp4v46yg9ppOHkuHu3B6bUL4orx3T6U1Pks7tumPaEzOMMcWp1n0nHSMRKTzrzII8Ox5SOg0+kqbPk4fBpbMT95DKcoz43wZvtoXbAn+wp+3uakUVnxE0WSR1jy4Fkin/E7MM/0kGLs024sy2cYh8gnO6IuIrsp9W1IPXVpDtu5a8c9WRN54uvkKp58xBqxJ34eRPvLN6iRp8gmGyd/7Dj7OcbZR8lLxQtLNt6lZ7P0CIa2fBzJ2XbVOTXqMd8qOaY9Jq16kSUPfpKVP+S/7nXPeaev5DC+/F6jSK/L9x72S8t9uhPtf7TrOWlX4PM1nKzjRkg8h6SflPJn0F4mvifFn2bi5U9U0TvetDOL0b6e/xSY7LRJrtas5x02OGvSYy20iuXEPw5JYatWUasV9eu78vLH+N+IWXgOr2EBVKjDMnzCt7NNeg//Dj/gZ/Fv6VnpRell1PXGTIx5Chc+pTf/AJqJWCA=</latexit> <latexit sha1_base64="Jgcy+ObGrS0Ov4dNvH/FdhxrE5s=">AAARbXictVhZb9NAEJ5ylnAlIJ5AyJBW9IUojiihbxVRJfoAKlXbVD2IHGebWvUlH23TqD+CV/hl/AN44i8wO/Ymae143aRklXg8s983x1522q5p+EG1+mvmxs1bt+/cnb1XuP/g4aPHxdKTLd8JPZ1t6o7peNttzWemYbPNwAhMtu16TLPaJmu2jxrc3jxmnm849kbQc9m+pXVt48DQtQBVzT0rbKmK0iqWq5VafUldXFKqlUW19r5eV9RKlT4DoQzxZ80pzS7AHnTAAR1CsICBDQHKJmjgY9sFFargom4f+qjzUDLIzuAcCogNsRfDHhpqj/C3i3e7sdbGe87pE1pHLyZ+PUQqMI8YB/t5KHNvCtlDYubacdx94uSx9fDajrks1AZwiFoZTvTMi+O5BHAAHygHA3NyScOz02OWkKrCI1dGsgqQwUUdlzto91DWCSnqrBDGp9x5bTWy/6aeXMvv9bhvCH8oymGbz9EKlJeNHCdUX4sytjGePuq/YPz8KqrQxtYn7bkEdxnJ4zdzYTdg6xLWQ6kf67Ox66nxrktxa9jSkGtS5E4qbkeKaxCOS8NZ36dx7dCcaUgZmmMq3JQiV8diV3Og+fz3B9Ef07yMdAblYefI3UGcYLg4ysIm41hJ4KPKrwyw8xloHnM3dZYJi4zBopWexiAscgYNTscwRJbsCkSRjrI48W7Cufh8ErvrCUbE2U28WiT7g0yv5muY82S+jJHZ0cHeBzT/DWKM+FyUXo18hfZ8sKe9naLxdeXFkXp4v46yg9ppOHkuHu3B6bUL4orx3T6U1Pks7tumPaEzOMMcWp1n0nHSMRKTzrzII8Ox5SOg0+kqbPk4fBpbMT95DKcoz43wZvtoXbAn+wp+3uakUVnxE0WSR1jy4Fkin/E7MM/0kGLs024sy2cYh8gnO6IuIrsp9W1IPXVpDtu5a8c9WRN54uvkKp58xBqxJ34eRPvLN6iRp8gmGyd/7Dj7OcbZR8lLxQtLNt6lZ7P0CIa2fBzJ2XbVOTXqMd8qOaY9Jq16kSUPfpKVP+S/7nXPeaev5DC+/F6jSK/L9x72S8t9uhPtf7TrOWlX4PM1nKzjRkg8h6SflPJn0F4mvifFn2bi5U9U0TvetDOL0b6e/xSY7LRJrtas5x02OGvSYy20iuXEPw5JYatWUasV9eu78vLH+N+IWXgOr2EBVKjDMnzCt7NNeg//Dj/gZ/Fv6VnpRell1PXGTIx5Chc+pTf/AJqJWCA=</latexit> <latexit sha1_base64="Jgcy+ObGrS0Ov4dNvH/FdhxrE5s=">AAARbXictVhZb9NAEJ5ylnAlIJ5AyJBW9IUojiihbxVRJfoAKlXbVD2IHGebWvUlH23TqD+CV/hl/AN44i8wO/Ymae143aRklXg8s983x1522q5p+EG1+mvmxs1bt+/cnb1XuP/g4aPHxdKTLd8JPZ1t6o7peNttzWemYbPNwAhMtu16TLPaJmu2jxrc3jxmnm849kbQc9m+pXVt48DQtQBVzT0rbKmK0iqWq5VafUldXFKqlUW19r5eV9RKlT4DoQzxZ80pzS7AHnTAAR1CsICBDQHKJmjgY9sFFargom4f+qjzUDLIzuAcCogNsRfDHhpqj/C3i3e7sdbGe87pE1pHLyZ+PUQqMI8YB/t5KHNvCtlDYubacdx94uSx9fDajrks1AZwiFoZTvTMi+O5BHAAHygHA3NyScOz02OWkKrCI1dGsgqQwUUdlzto91DWCSnqrBDGp9x5bTWy/6aeXMvv9bhvCH8oymGbz9EKlJeNHCdUX4sytjGePuq/YPz8KqrQxtYn7bkEdxnJ4zdzYTdg6xLWQ6kf67Ox66nxrktxa9jSkGtS5E4qbkeKaxCOS8NZ36dx7dCcaUgZmmMq3JQiV8diV3Og+fz3B9Ef07yMdAblYefI3UGcYLg4ysIm41hJ4KPKrwyw8xloHnM3dZYJi4zBopWexiAscgYNTscwRJbsCkSRjrI48W7Cufh8ErvrCUbE2U28WiT7g0yv5muY82S+jJHZ0cHeBzT/DWKM+FyUXo18hfZ8sKe9naLxdeXFkXp4v46yg9ppOHkuHu3B6bUL4orx3T6U1Pks7tumPaEzOMMcWp1n0nHSMRKTzrzII8Ox5SOg0+kqbPk4fBpbMT95DKcoz43wZvtoXbAn+wp+3uakUVnxE0WSR1jy4Fkin/E7MM/0kGLs024sy2cYh8gnO6IuIrsp9W1IPXVpDtu5a8c9WRN54uvkKp58xBqxJ34eRPvLN6iRp8gmGyd/7Dj7OcbZR8lLxQtLNt6lZ7P0CIa2fBzJ2XbVOTXqMd8qOaY9Jq16kSUPfpKVP+S/7nXPeaev5DC+/F6jSK/L9x72S8t9uhPtf7TrOWlX4PM1nKzjRkg8h6SflPJn0F4mvifFn2bi5U9U0TvetDOL0b6e/xSY7LRJrtas5x02OGvSYy20iuXEPw5JYatWUasV9eu78vLH+N+IWXgOr2EBVKjDMnzCt7NNeg//Dj/gZ/Fv6VnpRell1PXGTIx5Chc+pTf/AJqJWCA=</latexit> ⌃1 <latexit sha1_base64="cMnDccR9hUoCmCbz+GKk1RN8c8w=">AAARbnictVhdT9NgFD7gF86vTRNvjHE6SLhxWRdxckckJHKhQQRGAF26royGfqXtgLHwJ7zVP+Y/0Dt/guec9t0G7fqWbfbN1tNz3uc5H+9Xt6ZrGn5Qqfyamb1x89btO3N3c/fuP3j4KF94vOM7HU/TtzXHdLzdpurrpmHr24ERmPqu6+mq1TT1evN4lez1E93zDcfeCrqu/tVS27ZxaGhqgKrdgy9G21IbSiNfqpSrtWVlablYKS8p1be1WlEpV/jqCyWIrg2nMLcIB9ACBzTogAU62BCgbIIKPrZ9UKACLuq+Qg91HkoG23W4gBxiO9hLxx4qao/xu41P+5HWxmfi9BmtoRcTPx4ii7CAGAf7eSiTtyLbO8xM2lHcPeak2Lp4b0ZcFmoDOEKtDCd6ZsVRLgEcwjvOwcCcXNZQdlrE0uGqUOTFoawCZHBRR3IL7R7KGiNFnYuM8Tl3qq3K9t/ck7T0rEV9O/CHoxy0hQwtx3nZyHHK9bU4Yxvj6aH+E8ZPd1GFJrYeay8kuKtIit/MhN2CnStYD6VepE/HbibGuynFbWBLQm5IkXuJuD0pbpVxJA1mfY/HtcVzZlXKUB9R4boUuT4Su54BTfPf70d/wvMy1Bmch50hdwdxguHyKAubjGMthg8rv9bHLqSgKeZ24iwTFhmDxSs9iUFY5AwqnI1gCC3pFQgjHWZxot2EuGg+id31FCMidhPvFst+P9Pr+RrkPJ4vY2h2tLD3Ic9/gxlDPhell0Mfob3o72mvJ2i0rrwoUg+fN1F2UDsJJ+Xi8R6cXLsgqhjt9h1Jnc+jvk3eE1r9M8zh1XkuHScNIzH5zAs96ji2NAIan67Clo3D57EV85NiOEN5fog33Ufjkj3eV/BTm5dGZUVvFHEeYcmC12P5jN6BKdMjjrHHu7Esn0EcIp/0iNqIbCfUd1Xqqc1z2M5cO/JkjeWJ1sl1PPmINSJPdB6E+8s3qLKn0CYbJ3/kOPsZxtlHyUvEC0s63uV3s+QIBrZsHPHZdt05Newx2yo54T0mqXqhJQt+nJU/4J/2uifeySs5iC+71zDSafk+wH5JuU92ov2PNp2Tdg0+TuFkHTVC4j0k+aSUv4N2U/FdKf4sFS9/owp/4006s3Te17OfAuOdNvHVmva+o/fPmuRYc418KfaPQ1zYqZaVSln5/Ka08j76N2IOnsErWAQFarACH/DX2Tb/0/AdfsDP/N/C08Lzwouw6+xMhHkCl67C4j+UAlj5</latexit> <latexit sha1_base64="cMnDccR9hUoCmCbz+GKk1RN8c8w=">AAARbnictVhdT9NgFD7gF86vTRNvjHE6SLhxWRdxckckJHKhQQRGAF26royGfqXtgLHwJ7zVP+Y/0Dt/guec9t0G7fqWbfbN1tNz3uc5H+9Xt6ZrGn5Qqfyamb1x89btO3N3c/fuP3j4KF94vOM7HU/TtzXHdLzdpurrpmHr24ERmPqu6+mq1TT1evN4lez1E93zDcfeCrqu/tVS27ZxaGhqgKrdgy9G21IbSiNfqpSrtWVlablYKS8p1be1WlEpV/jqCyWIrg2nMLcIB9ACBzTogAU62BCgbIIKPrZ9UKACLuq+Qg91HkoG23W4gBxiO9hLxx4qao/xu41P+5HWxmfi9BmtoRcTPx4ii7CAGAf7eSiTtyLbO8xM2lHcPeak2Lp4b0ZcFmoDOEKtDCd6ZsVRLgEcwjvOwcCcXNZQdlrE0uGqUOTFoawCZHBRR3IL7R7KGiNFnYuM8Tl3qq3K9t/ck7T0rEV9O/CHoxy0hQwtx3nZyHHK9bU4Yxvj6aH+E8ZPd1GFJrYeay8kuKtIit/MhN2CnStYD6VepE/HbibGuynFbWBLQm5IkXuJuD0pbpVxJA1mfY/HtcVzZlXKUB9R4boUuT4Su54BTfPf70d/wvMy1Bmch50hdwdxguHyKAubjGMthg8rv9bHLqSgKeZ24iwTFhmDxSs9iUFY5AwqnI1gCC3pFQgjHWZxot2EuGg+id31FCMidhPvFst+P9Pr+RrkPJ4vY2h2tLD3Ic9/gxlDPhell0Mfob3o72mvJ2i0rrwoUg+fN1F2UDsJJ+Xi8R6cXLsgqhjt9h1Jnc+jvk3eE1r9M8zh1XkuHScNIzH5zAs96ji2NAIan67Clo3D57EV85NiOEN5fog33Ufjkj3eV/BTm5dGZUVvFHEeYcmC12P5jN6BKdMjjrHHu7Esn0EcIp/0iNqIbCfUd1Xqqc1z2M5cO/JkjeWJ1sl1PPmINSJPdB6E+8s3qLKn0CYbJ3/kOPsZxtlHyUvEC0s63uV3s+QIBrZsHPHZdt05Newx2yo54T0mqXqhJQt+nJU/4J/2uifeySs5iC+71zDSafk+wH5JuU92ov2PNp2Tdg0+TuFkHTVC4j0k+aSUv4N2U/FdKf4sFS9/owp/4006s3Te17OfAuOdNvHVmva+o/fPmuRYc418KfaPQ1zYqZaVSln5/Ka08j76N2IOnsErWAQFarACH/DX2Tb/0/AdfsDP/N/C08Lzwouw6+xMhHkCl67C4j+UAlj5</latexit> <latexit sha1_base64="cMnDccR9hUoCmCbz+GKk1RN8c8w=">AAARbnictVhdT9NgFD7gF86vTRNvjHE6SLhxWRdxckckJHKhQQRGAF26royGfqXtgLHwJ7zVP+Y/0Dt/guec9t0G7fqWbfbN1tNz3uc5H+9Xt6ZrGn5Qqfyamb1x89btO3N3c/fuP3j4KF94vOM7HU/TtzXHdLzdpurrpmHr24ERmPqu6+mq1TT1evN4lez1E93zDcfeCrqu/tVS27ZxaGhqgKrdgy9G21IbSiNfqpSrtWVlablYKS8p1be1WlEpV/jqCyWIrg2nMLcIB9ACBzTogAU62BCgbIIKPrZ9UKACLuq+Qg91HkoG23W4gBxiO9hLxx4qao/xu41P+5HWxmfi9BmtoRcTPx4ii7CAGAf7eSiTtyLbO8xM2lHcPeak2Lp4b0ZcFmoDOEKtDCd6ZsVRLgEcwjvOwcCcXNZQdlrE0uGqUOTFoawCZHBRR3IL7R7KGiNFnYuM8Tl3qq3K9t/ck7T0rEV9O/CHoxy0hQwtx3nZyHHK9bU4Yxvj6aH+E8ZPd1GFJrYeay8kuKtIit/MhN2CnStYD6VepE/HbibGuynFbWBLQm5IkXuJuD0pbpVxJA1mfY/HtcVzZlXKUB9R4boUuT4Su54BTfPf70d/wvMy1Bmch50hdwdxguHyKAubjGMthg8rv9bHLqSgKeZ24iwTFhmDxSs9iUFY5AwqnI1gCC3pFQgjHWZxot2EuGg+id31FCMidhPvFst+P9Pr+RrkPJ4vY2h2tLD3Ic9/gxlDPhell0Mfob3o72mvJ2i0rrwoUg+fN1F2UDsJJ+Xi8R6cXLsgqhjt9h1Jnc+jvk3eE1r9M8zh1XkuHScNIzH5zAs96ji2NAIan67Clo3D57EV85NiOEN5fog33Ufjkj3eV/BTm5dGZUVvFHEeYcmC12P5jN6BKdMjjrHHu7Esn0EcIp/0iNqIbCfUd1Xqqc1z2M5cO/JkjeWJ1sl1PPmINSJPdB6E+8s3qLKn0CYbJ3/kOPsZxtlHyUvEC0s63uV3s+QIBrZsHPHZdt05Newx2yo54T0mqXqhJQt+nJU/4J/2uifeySs5iC+71zDSafk+wH5JuU92ov2PNp2Tdg0+TuFkHTVC4j0k+aSUv4N2U/FdKf4sFS9/owp/4006s3Te17OfAuOdNvHVmva+o/fPmuRYc418KfaPQ1zYqZaVSln5/Ka08j76N2IOnsErWAQFarACH/DX2Tb/0/AdfsDP/N/C08Lzwouw6+xMhHkCl67C4j+UAlj5</latexit> <latexit sha1_base64="cMnDccR9hUoCmCbz+GKk1RN8c8w=">AAARbnictVhdT9NgFD7gF86vTRNvjHE6SLhxWRdxckckJHKhQQRGAF26royGfqXtgLHwJ7zVP+Y/0Dt/guec9t0G7fqWbfbN1tNz3uc5H+9Xt6ZrGn5Qqfyamb1x89btO3N3c/fuP3j4KF94vOM7HU/TtzXHdLzdpurrpmHr24ERmPqu6+mq1TT1evN4lez1E93zDcfeCrqu/tVS27ZxaGhqgKrdgy9G21IbSiNfqpSrtWVlablYKS8p1be1WlEpV/jqCyWIrg2nMLcIB9ACBzTogAU62BCgbIIKPrZ9UKACLuq+Qg91HkoG23W4gBxiO9hLxx4qao/xu41P+5HWxmfi9BmtoRcTPx4ii7CAGAf7eSiTtyLbO8xM2lHcPeak2Lp4b0ZcFmoDOEKtDCd6ZsVRLgEcwjvOwcCcXNZQdlrE0uGqUOTFoawCZHBRR3IL7R7KGiNFnYuM8Tl3qq3K9t/ck7T0rEV9O/CHoxy0hQwtx3nZyHHK9bU4Yxvj6aH+E8ZPd1GFJrYeay8kuKtIit/MhN2CnStYD6VepE/HbibGuynFbWBLQm5IkXuJuD0pbpVxJA1mfY/HtcVzZlXKUB9R4boUuT4Su54BTfPf70d/wvMy1Bmch50hdwdxguHyKAubjGMthg8rv9bHLqSgKeZ24iwTFhmDxSs9iUFY5AwqnI1gCC3pFQgjHWZxot2EuGg+id31FCMidhPvFst+P9Pr+RrkPJ4vY2h2tLD3Ic9/gxlDPhell0Mfob3o72mvJ2i0rrwoUg+fN1F2UDsJJ+Xi8R6cXLsgqhjt9h1Jnc+jvk3eE1r9M8zh1XkuHScNIzH5zAs96ji2NAIan67Clo3D57EV85NiOEN5fog33Ufjkj3eV/BTm5dGZUVvFHEeYcmC12P5jN6BKdMjjrHHu7Esn0EcIp/0iNqIbCfUd1Xqqc1z2M5cO/JkjeWJ1sl1PPmINSJPdB6E+8s3qLKn0CYbJ3/kOPsZxtlHyUvEC0s63uV3s+QIBrZsHPHZdt05Newx2yo54T0mqXqhJQt+nJU/4J/2uifeySs5iC+71zDSafk+wH5JuU92ov2PNp2Tdg0+TuFkHTVC4j0k+aSUv4N2U/FdKf4sFS9/owp/4006s3Te17OfAuOdNvHVmva+o/fPmuRYc418KfaPQ1zYqZaVSln5/Ka08j76N2IOnsErWAQFarACH/DX2Tb/0/AdfsDP/N/C08Lzwouw6+xMhHkCl67C4j+UAlj5</latexit> ⌃2 <latexit sha1_base64="I44BxFlG7bHpL+0iM9Bd0gdLPk0=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNi0L1jdiQyIMGESjhItluD2XD3rK7BUrDn/BV/5j/QN/8Cc7M7mkL3d2ztHVP2p2dOd83l3Pbtu6ahh+USr8mJm/cvHX7ztTd3L37Dx4+ms4/3vKdlqeLTd0xHW+7rvnCNGyxGRiBKbZdT2hW3RS1+nGV7LUT4fmGY28EbVfsW1rTNg4NXQtQtb331Wha2sHCwfRMuVjiq1AqVipLS+UKCovv35QWFwvSNAPRtebkp+ZhDxrggA4tsECADQHKJmjgY9uFMpTARd0+dFDnoWSwXcAF5BDbwl4Ce2ioPcbvJj7tRlobn4nTZ7SOXkz8eIgswBxiHOznoUzeCmxvMTNpk7g7zEmxtfFej7gs1AZwhFoVTvbMiqNcAjiEd5yDgTm5rKHs9IilxVWhyAt9WQXI4KKO5AbaPZR1Rso6Fxjjc+5UW43tv7knaelZj/q24A9H2WtzGVqO87KR45Tra3HGNsbTQf1njJ/usgp1bB3WXihwV5EUv5kJuwFbV7AeSp1In45dj413XYlbwxaHXFMid2JxO0pclXEk9WZ9h8e1wXOmqmSoJVS4pkSuJmJXM6Bp/vvd6E94XoY6g/OwM+TuIE4yXB5laVNxrAzgw8qvdLFzKWiKuRk7y6RFxWDxSo9jkBY1gwZnCQyhJb0CYaT9LE60mxAXzSe5u55iRMRu4t1i2e9mej1fvZyH82X0zY4G9j7k+W8wY8jnovSy7yO1F9097fUIjdaVF0Xq4fM6yg5qR+GkXDzeg+NrF0QVo92+pajzedS3zntCo3uGObw6z5XjpGMkJp95oUeBY0sjoPPpKm3ZOHweWzk/KYYzlGf7eNN9HFyyD/aV/NRmlVFZ0RvFII+0ZMGLgXySd2DK9Ihj7PBurMqnF4fMJz2iJiKbMfWtKj01eQ7bmWtHnqyhPNE6uY4nH7FG5InOg3B/+QYL7Cm0qcbJTxxnP8M4+yh5sXhpSce7/G4WH0HPlo1jcLZdd071e8y2Sk54j4mrXmjJgh9m5ff4x73uiXf0Svbiy+41jHRcvvewX1zuo51o/6ON56RdgU9jOFmTRki+h8SflOp30HYqvq3En6Xi1W9U4W+8UWeW4H09+ykw3GkzuFrT3ndE96yJjzXX/x9EsrC1UCyXiuUvb2eWP0T/RkzBM3gF81CGCizDR/x1tsn/NHyHH/Bz+m/+af55/kXYdXIiwjyBS1d+/h+jJlj6</latexit> <latexit sha1_base64="I44BxFlG7bHpL+0iM9Bd0gdLPk0=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNi0L1jdiQyIMGESjhItluD2XD3rK7BUrDn/BV/5j/QN/8Cc7M7mkL3d2ztHVP2p2dOd83l3Pbtu6ahh+USr8mJm/cvHX7ztTd3L37Dx4+ms4/3vKdlqeLTd0xHW+7rvnCNGyxGRiBKbZdT2hW3RS1+nGV7LUT4fmGY28EbVfsW1rTNg4NXQtQtb331Wha2sHCwfRMuVjiq1AqVipLS+UKCovv35QWFwvSNAPRtebkp+ZhDxrggA4tsECADQHKJmjgY9uFMpTARd0+dFDnoWSwXcAF5BDbwl4Ce2ioPcbvJj7tRlobn4nTZ7SOXkz8eIgswBxiHOznoUzeCmxvMTNpk7g7zEmxtfFej7gs1AZwhFoVTvbMiqNcAjiEd5yDgTm5rKHs9IilxVWhyAt9WQXI4KKO5AbaPZR1Rso6Fxjjc+5UW43tv7knaelZj/q24A9H2WtzGVqO87KR45Tra3HGNsbTQf1njJ/usgp1bB3WXihwV5EUv5kJuwFbV7AeSp1In45dj413XYlbwxaHXFMid2JxO0pclXEk9WZ9h8e1wXOmqmSoJVS4pkSuJmJXM6Bp/vvd6E94XoY6g/OwM+TuIE4yXB5laVNxrAzgw8qvdLFzKWiKuRk7y6RFxWDxSo9jkBY1gwZnCQyhJb0CYaT9LE60mxAXzSe5u55iRMRu4t1i2e9mej1fvZyH82X0zY4G9j7k+W8wY8jnovSy7yO1F9097fUIjdaVF0Xq4fM6yg5qR+GkXDzeg+NrF0QVo92+pajzedS3zntCo3uGObw6z5XjpGMkJp95oUeBY0sjoPPpKm3ZOHweWzk/KYYzlGf7eNN9HFyyD/aV/NRmlVFZ0RvFII+0ZMGLgXySd2DK9Ihj7PBurMqnF4fMJz2iJiKbMfWtKj01eQ7bmWtHnqyhPNE6uY4nH7FG5InOg3B/+QYL7Cm0qcbJTxxnP8M4+yh5sXhpSce7/G4WH0HPlo1jcLZdd071e8y2Sk54j4mrXmjJgh9m5ff4x73uiXf0Svbiy+41jHRcvvewX1zuo51o/6ON56RdgU9jOFmTRki+h8SflOp30HYqvq3En6Xi1W9U4W+8UWeW4H09+ykw3GkzuFrT3ndE96yJjzXX/x9EsrC1UCyXiuUvb2eWP0T/RkzBM3gF81CGCizDR/x1tsn/NHyHH/Bz+m/+af55/kXYdXIiwjyBS1d+/h+jJlj6</latexit> <latexit sha1_base64="I44BxFlG7bHpL+0iM9Bd0gdLPk0=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNi0L1jdiQyIMGESjhItluD2XD3rK7BUrDn/BV/5j/QN/8Cc7M7mkL3d2ztHVP2p2dOd83l3Pbtu6ahh+USr8mJm/cvHX7ztTd3L37Dx4+ms4/3vKdlqeLTd0xHW+7rvnCNGyxGRiBKbZdT2hW3RS1+nGV7LUT4fmGY28EbVfsW1rTNg4NXQtQtb331Wha2sHCwfRMuVjiq1AqVipLS+UKCovv35QWFwvSNAPRtebkp+ZhDxrggA4tsECADQHKJmjgY9uFMpTARd0+dFDnoWSwXcAF5BDbwl4Ce2ioPcbvJj7tRlobn4nTZ7SOXkz8eIgswBxiHOznoUzeCmxvMTNpk7g7zEmxtfFej7gs1AZwhFoVTvbMiqNcAjiEd5yDgTm5rKHs9IilxVWhyAt9WQXI4KKO5AbaPZR1Rso6Fxjjc+5UW43tv7knaelZj/q24A9H2WtzGVqO87KR45Tra3HGNsbTQf1njJ/usgp1bB3WXihwV5EUv5kJuwFbV7AeSp1In45dj413XYlbwxaHXFMid2JxO0pclXEk9WZ9h8e1wXOmqmSoJVS4pkSuJmJXM6Bp/vvd6E94XoY6g/OwM+TuIE4yXB5laVNxrAzgw8qvdLFzKWiKuRk7y6RFxWDxSo9jkBY1gwZnCQyhJb0CYaT9LE60mxAXzSe5u55iRMRu4t1i2e9mej1fvZyH82X0zY4G9j7k+W8wY8jnovSy7yO1F9097fUIjdaVF0Xq4fM6yg5qR+GkXDzeg+NrF0QVo92+pajzedS3zntCo3uGObw6z5XjpGMkJp95oUeBY0sjoPPpKm3ZOHweWzk/KYYzlGf7eNN9HFyyD/aV/NRmlVFZ0RvFII+0ZMGLgXySd2DK9Ihj7PBurMqnF4fMJz2iJiKbMfWtKj01eQ7bmWtHnqyhPNE6uY4nH7FG5InOg3B/+QYL7Cm0qcbJTxxnP8M4+yh5sXhpSce7/G4WH0HPlo1jcLZdd071e8y2Sk54j4mrXmjJgh9m5ff4x73uiXf0Svbiy+41jHRcvvewX1zuo51o/6ON56RdgU9jOFmTRki+h8SflOp30HYqvq3En6Xi1W9U4W+8UWeW4H09+ykw3GkzuFrT3ndE96yJjzXX/x9EsrC1UCyXiuUvb2eWP0T/RkzBM3gF81CGCizDR/x1tsn/NHyHH/Bz+m/+af55/kXYdXIiwjyBS1d+/h+jJlj6</latexit> <latexit sha1_base64="S1UDWHr3hS1vLoJ+NluDODCH10U=">AAARWHictVhLT9tAEB76pCm0iVT10ktaQOJS5HBpj5UipHJoRREQxKPIdpZg4ZdsBwgRf6DX/rr+grb/ojPj3SRgx2uS1KvE45n9vnnsy4kVuk6cGMavuQcPHz1+8nT+WeX5QmXxxcvqwl4cdCNb7NqBG0T7lhkL1/HFbuIkrtgPI2F6lita1nmT7K0LEcVO4O8kvVAce2bHd04d20xQtXVSXTLWDL7qWaEhhSWQV1CbX4UjaEMANnTBAwE+JCi7YEKM7RAaYECIumPooy5CyWG7gBuoILaLvQT2MFF7jt8dfDqUWh+fiTNmtI1eXPxEiKzDCmIC7BehTN7qbO8yM2nHcfeZk2Lr4d2SXB5qEzhDrQ6nepbFUS4JnMJHzsHBnELWUHa2ZOlyVSjy+khWCTKEqCO5jfYIZZuRqs51xsScO9XWZPsf7klaerZl3y785SiHbaVEq3BePnJccn09ztjHePqo/4rx011VwcLWZ+2NBncXSfG7pbA7sHcHG6HUl/pi7HZuvNta3Ba2POSWFnmQizvQ4pqMI2k46/s8rm2eM00tQ2tMhVta5OZY7GYJNM3/eBD9Bc/LVOdwHn6J3APEKYbbo6xsOo6NDD6t/MYAu1KAppg7ubNMWXQMHq/0PAZl0TOYcDWGIbUUVyCNdJQlkLsJcdF8UrvrJUZE7C7ePZbjQab38zXMeTJfzsjsaGPvU57/DjOmfCFKb0c+Snsz2NPeT9FoXUUy0gift1EOUDsNJ+US8R6cX7tEVox2+66mzteyr8V7QntwhgW8Oq+142RjJC6fealHgWNLI2Dz6aps5ThiHls1PymGK5SXR3iLfZzcsmf7Kn5qy9qoPPlGkeVRljJ4kcln/A5MmZ5xjH3ejXX5DONQ+RRH1EFkJ6e+Ta2nDs9hv3TtyJM3kSdaJ/fxFCPWkZ7oPEj3l++wzp5Sm26c4rHjHJcY5xilKBevLMX4kN/N8iMY2spxZGfbfefUqMdyq+SC95i86qWWMvhJVv6Qf9brnninr+QwvvJe00hn5fsI++XlPt2J9j/abE7aDfgyg5N13Aip95D8k1L/DtorxPe0+KtCvP6NKv2NN+3MEryvlz8FJjttsqu16H1HDM6a/FgrJ9Wlxt0/HLLC3vpaw1hrfDNgHt7AO1iFBnyAT/AZf5TtImEbfsDP6u/aYu1V+lfFgzn5n0UNbl211/8AZ1dTvQ==</latexit> <latexit sha1_base64="sN2igKasQ7CRqIWLFteh5P91qiY=">AAARY3ictVhLTxNRFD7gCytq68KNMVaBhI2kZaNLk4ZEFhpEoISHzXR6WybMK/MASsOfcKt/zH+gO3+C55yZ2xbmcYe29qadM+fc7zuP+5pO2zUNP6jVfs3N37l77/6DhYelR4uPnzwtVxb3fCf0dLGrO6bj7bc1X5iGLXYDIzDFvusJzWqbotk+bZC9eSY833DsnaDvimNL69lG19C1AFX7R1+NnqW11lvlpdpajT/VpFCPhSWIP1tOZWEVjqADDugQggUCbAhQNkEDH9sh1KEGLuqOYYA6DyWD7QKuoITYEHsJ7KGh9hR/e3h3GGttvCdOn9E6ejHx6yGyCiuIcbCfhzJ5q7I9ZGbSZnEPmJNi6+O1HXNZqA3gBLUqnOxZFEe5BNCF95yDgTm5rKHs9Jgl5KpQ5NWxrAJkcFFHcgftHso6I2Wdq4zxOXeqrcb239yTtHSvx31D+MNRjtpKgVbivGzkOOf6WpyxjfEMUP8Z46errEIb24C1VwrcTSTFbxbC7sDeDayH0iDW52O3U+PdVuK2sKUht5TIg1TcgRLXYBxJo1k/4HHt8JxpKBmaGRVuKpGbmdjNAmia//4w+jOel5HO4DzsArk7iJMM10dZ2lQcGwl8VPmNIXYlB00x91JnmbSoGCxe6WkM0qJm0OAigyGy5FcginScxYl3E+Ki+SR313OMiNhNvFos+8NMb+drlPNkvoyx2dHB3l2e/wYzRnwuSq/HvlJ7NdzT3k7RaF15caQe3m+j7KB2Gk7KxeM9OL12QVwx2u1DRZ0v475t3hM6wzPM4dV5qRwnHSMx+cyLPAocWxoBnU9XaSvG4fPYyvlJMVygvDzGm++jdc2e7Cv5qS0ro7LiJ4okj7QUwYtEPtk7MGV6wjEOeDdW5TOKQ+aTH1EPkb2U+jaUnno8h+3CtSNP1kSeaJ3cxpOPWCP2ROdBtL98g3X2FNlU4+RnjrNfYJx9lLxUvLTk411+NkuPYGQrxpGcbbedU+Mei62SM95j0qoXWYrgJ1n5I/5Zr3vinb6So/iKe40inZXvI+yXlvt0J9r/aLM5aTfg0wxO1qwRks8h6Sel+hm0n4vvK/EXuXj1E1X0H2/amSV4Xy9+Ckx22iRXa97zjhieNemxllrlpfrNNw5JYW99rV5bq3+pwQK8gDewCnV4Bx/gI/4p2+UXDN/hB/ws/608r7yM3lbMz8WvLZ7BtU/l1T9ZmVfT</latexit> <latexit sha1_base64="KDPVCXGACS3XAD/EKecbSr4gAkY=">AAARY3ictVhbTxNREB68YkWlPvhijFUg4cVmi4Hqm0lDIg8aRKCEi2S7PZQNe8vuFigNf8JX/WP+A33zJzgzu6ctdHfP0taetDs7c75vLue23YZnmUGoab+mbt2+c/fe/ekHhYczjx4/mS3ObAdu2zfEluFarr/T0ANhmY7YCs3QEjueL3S7YYl646RG9vqp8APTdTbDjicObL3lmEemoYeo2tn/arZs/XDpcHauUtb4U9LK1erKSqWKwvL7t9ryckma5iD+rLvF6UXYhya4YEAbbBDgQIiyBToE2PagAhp4qDuALup8lEy2C7iEAmLb2EtgDx21J/jbwru9WOvgPXEGjDbQi4VfH5ElWECMi/18lMlbie1tZiZtGneXOSm2Dl4bMZeN2hCOUavCyZ55cZRLCEfwjnMwMSePNZSdEbO0uSoUeWkgqxAZPNSR3ES7j7LBSFnnEmMCzp1qq7P9N/ckLd0bcd82/OEo+20hRytwXg5ynHF9bc7YwXi6qP+M8dNVVqGBrcvaSwXuOpLit3JhN2H7GtZHqRvrs7EbifFuKHHr2JKQ60rkbiJuV4mrMY6k/qzv8rg2ec7UlAz1lArXlci1VOxaDjTN/6AX/SnPy0hnch5OjtxdxEmGq6MsbSqO1SF8VPnVHnYhA00xtxJnmbSoGGxe6UkM0qJm0OE8hSGyZFcginSQxY13E+Ki+SR31zOMiNgtvNosB71Mb+arn/NovsyB2dHE3kc8/01mjPg8lF4NfKX2srenvRmj0bry40h9vN9A2UXtOJyUi897cHLtwrhitNu3FXW+iPs2eE9o9s4wl1fnhXKcDIzE4jMv8ihwbGkEDD5dpS0fR8BjK+cnxXCO8vwAb7aPwyv24b6Sn9q8Mio7fqIY5pGWPHgxlE/6DkyZHnOMXd6NVfn045D5ZEfUQmQrob41pacWz2End+3Ikz2SJ1onN/EUINaMPdF5EO0v32CJPUU21TgFqeMc5BjnACU/ES8t2XiPn82SI+jb8nEMz7abzqlBj/lWySnvMUnViyx58KOs/D7/pNc98Y5fyX58+b1GkU7K9z72S8p9vBPtf7TJnLSr8GkCJ2vaCMnnkOSTUv0M2snEd5T480y8+okq+o837swSvK/nPwVGO22GV2vW847onTXJsRYG30GkC9tL5YpWrnzRYBqew2tYhApU4QN8xD9lW/yC4Tv8gJ+zf4vPii+itxW3puLXFk/hyqf48h9w01gR</latexit> <latexit sha1_base64="8xMlZIZWB+RqK6SDpU+751rIC2w=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwovNFgPVN2JDIg8aRG4BlGy3h7Jhb9ndAqXhT/iqf8x/oG/+BGdm97SF7u5Z2ron7c7OnO+by7ltW/csMwg17dfE5I2bt27fmbpbuHf/wcNH08XHW4Hb8g2xabiW6+/U9UBYpiM2QzO0xI7nC92uW2K7flwj+/aJ8APTdTbCtie+2nrTMQ9NQw9RtbP/xWza+sHCwfRMpazxVdLK1erSUqWKwuK7N9riYkmaZiC+1tzi1DzsQwNcMKAFNghwIETZAh0CbHtQAQ081H2FDup8lEy2C7iAAmJb2EtgDx21x/jdxKe9WOvgM3EGjDbQi4UfH5ElmEOMi/18lMlbie0tZiZtGneHOSm2Nt7rMZeN2hCOUKvCyZ55cZRLCIfwlnMwMSePNZSdEbO0uCoUeakvqxAZPNSR3EC7j7LBSFnnEmMCzp1qq7P9N/ckLT0bcd8W/OEoe20uRytwXg5ynHJ9bc7YwXg6qP+E8dNdVqGOrcPaCwXuKpLit3JhN2DrCtZHqRPrs7HrifGuK3Fr2JKQa0rkbiJuV4mrMY6k3qzv8Lg2eM7UlAzbKRXeViJXU7GrOdA0/4Nu9Cc8LyOdyXk4OXJ3EScZLo+ytKk4VgbwUeVXuti5DDTF3EycZdKiYrB5pScxSIuaQYezFIbIkl2BKNJ+FjfeTYiL5pPcXU8xImK38G6zHHQzvZ6vXs7D+TL7ZkcDex/y/DeZMeLzUHrZ95Hai+6e9nqERuvKjyP18XkdZRe1o3BSLj7vwcm1C+OK0W7fUtT5PO5b5z2h0T3DXF6d58pxMjASi8+8yKPAsaURMPh0lbZ8HAGPrZyfFMMZyrN9vNk+Di7ZB/tKfmqzyqjs+I1ikEda8uDFQD7pOzBlesQxdng3VuXTi0Pmkx1RE5HNhPrWlJ6aPIed3LUjT/ZQnmidXMdTgFgz9kTnQbS/fIMF9hTZVOMUpI5zkGOcA5T8RLy0ZOM9fjdLjqBny8cxONuuO6f6PeZbJSe8xyRVL7LkwQ+z8nv84173xDt6JXvx5fcaRTou3/vYLyn30U60/9HGc9KuwMcxnKxpIyTfQ5JPSvU7aDsT31bizzLx6jeq6DfeqDNL8L6e/xQY7rQZXK1Z7zuie9Ykx1ro/w8iXdhaKFe0cuWzNrP8Pv43YgqewSuYhwpUYRk+4K+zTf6n4Tv8gJ/Tf4tPi8+LL6KukxMx5glcuorz/wCh5lj2</latexit> <latexit sha1_base64="I44BxFlG7bHpL+0iM9Bd0gdLPk0=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNi0L1jdiQyIMGESjhItluD2XD3rK7BUrDn/BV/5j/QN/8Cc7M7mkL3d2ztHVP2p2dOd83l3Pbtu6ahh+USr8mJm/cvHX7ztTd3L37Dx4+ms4/3vKdlqeLTd0xHW+7rvnCNGyxGRiBKbZdT2hW3RS1+nGV7LUT4fmGY28EbVfsW1rTNg4NXQtQtb331Wha2sHCwfRMuVjiq1AqVipLS+UKCovv35QWFwvSNAPRtebkp+ZhDxrggA4tsECADQHKJmjgY9uFMpTARd0+dFDnoWSwXcAF5BDbwl4Ce2ioPcbvJj7tRlobn4nTZ7SOXkz8eIgswBxiHOznoUzeCmxvMTNpk7g7zEmxtfFej7gs1AZwhFoVTvbMiqNcAjiEd5yDgTm5rKHs9IilxVWhyAt9WQXI4KKO5AbaPZR1Rso6Fxjjc+5UW43tv7knaelZj/q24A9H2WtzGVqO87KR45Tra3HGNsbTQf1njJ/usgp1bB3WXihwV5EUv5kJuwFbV7AeSp1In45dj413XYlbwxaHXFMid2JxO0pclXEk9WZ9h8e1wXOmqmSoJVS4pkSuJmJXM6Bp/vvd6E94XoY6g/OwM+TuIE4yXB5laVNxrAzgw8qvdLFzKWiKuRk7y6RFxWDxSo9jkBY1gwZnCQyhJb0CYaT9LE60mxAXzSe5u55iRMRu4t1i2e9mej1fvZyH82X0zY4G9j7k+W8wY8jnovSy7yO1F9097fUIjdaVF0Xq4fM6yg5qR+GkXDzeg+NrF0QVo92+pajzedS3zntCo3uGObw6z5XjpGMkJp95oUeBY0sjoPPpKm3ZOHweWzk/KYYzlGf7eNN9HFyyD/aV/NRmlVFZ0RvFII+0ZMGLgXySd2DK9Ihj7PBurMqnF4fMJz2iJiKbMfWtKj01eQ7bmWtHnqyhPNE6uY4nH7FG5InOg3B/+QYL7Cm0qcbJTxxnP8M4+yh5sXhpSce7/G4WH0HPlo1jcLZdd071e8y2Sk54j4mrXmjJgh9m5ff4x73uiXf0Svbiy+41jHRcvvewX1zuo51o/6ON56RdgU9jOFmTRki+h8SflOp30HYqvq3En6Xi1W9U4W+8UWeW4H09+ykw3GkzuFrT3ndE96yJjzXX/x9EsrC1UCyXiuUvb2eWP0T/RkzBM3gF81CGCizDR/x1tsn/NHyHH/Bz+m/+af55/kXYdXIiwjyBS1d+/h+jJlj6</latexit> <latexit sha1_base64="I44BxFlG7bHpL+0iM9Bd0gdLPk0=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNi0L1jdiQyIMGESjhItluD2XD3rK7BUrDn/BV/5j/QN/8Cc7M7mkL3d2ztHVP2p2dOd83l3Pbtu6ahh+USr8mJm/cvHX7ztTd3L37Dx4+ms4/3vKdlqeLTd0xHW+7rvnCNGyxGRiBKbZdT2hW3RS1+nGV7LUT4fmGY28EbVfsW1rTNg4NXQtQtb331Wha2sHCwfRMuVjiq1AqVipLS+UKCovv35QWFwvSNAPRtebkp+ZhDxrggA4tsECADQHKJmjgY9uFMpTARd0+dFDnoWSwXcAF5BDbwl4Ce2ioPcbvJj7tRlobn4nTZ7SOXkz8eIgswBxiHOznoUzeCmxvMTNpk7g7zEmxtfFej7gs1AZwhFoVTvbMiqNcAjiEd5yDgTm5rKHs9IilxVWhyAt9WQXI4KKO5AbaPZR1Rso6Fxjjc+5UW43tv7knaelZj/q24A9H2WtzGVqO87KR45Tra3HGNsbTQf1njJ/usgp1bB3WXihwV5EUv5kJuwFbV7AeSp1In45dj413XYlbwxaHXFMid2JxO0pclXEk9WZ9h8e1wXOmqmSoJVS4pkSuJmJXM6Bp/vvd6E94XoY6g/OwM+TuIE4yXB5laVNxrAzgw8qvdLFzKWiKuRk7y6RFxWDxSo9jkBY1gwZnCQyhJb0CYaT9LE60mxAXzSe5u55iRMRu4t1i2e9mej1fvZyH82X0zY4G9j7k+W8wY8jnovSy7yO1F9097fUIjdaVF0Xq4fM6yg5qR+GkXDzeg+NrF0QVo92+pajzedS3zntCo3uGObw6z5XjpGMkJp95oUeBY0sjoPPpKm3ZOHweWzk/KYYzlGf7eNN9HFyyD/aV/NRmlVFZ0RvFII+0ZMGLgXySd2DK9Ihj7PBurMqnF4fMJz2iJiKbMfWtKj01eQ7bmWtHnqyhPNE6uY4nH7FG5InOg3B/+QYL7Cm0qcbJTxxnP8M4+yh5sXhpSce7/G4WH0HPlo1jcLZdd071e8y2Sk54j4mrXmjJgh9m5ff4x73uiXf0Svbiy+41jHRcvvewX1zuo51o/6ON56RdgU9jOFmTRki+h8SflOp30HYqvq3En6Xi1W9U4W+8UWeW4H09+ykw3GkzuFrT3ndE96yJjzXX/x9EsrC1UCyXiuUvb2eWP0T/RkzBM3gF81CGCizDR/x1tsn/NHyHH/Bz+m/+af55/kXYdXIiwjyBS1d+/h+jJlj6</latexit> <latexit sha1_base64="I44BxFlG7bHpL+0iM9Bd0gdLPk0=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNi0L1jdiQyIMGESjhItluD2XD3rK7BUrDn/BV/5j/QN/8Cc7M7mkL3d2ztHVP2p2dOd83l3Pbtu6ahh+USr8mJm/cvHX7ztTd3L37Dx4+ms4/3vKdlqeLTd0xHW+7rvnCNGyxGRiBKbZdT2hW3RS1+nGV7LUT4fmGY28EbVfsW1rTNg4NXQtQtb331Wha2sHCwfRMuVjiq1AqVipLS+UKCovv35QWFwvSNAPRtebkp+ZhDxrggA4tsECADQHKJmjgY9uFMpTARd0+dFDnoWSwXcAF5BDbwl4Ce2ioPcbvJj7tRlobn4nTZ7SOXkz8eIgswBxiHOznoUzeCmxvMTNpk7g7zEmxtfFej7gs1AZwhFoVTvbMiqNcAjiEd5yDgTm5rKHs9IilxVWhyAt9WQXI4KKO5AbaPZR1Rso6Fxjjc+5UW43tv7knaelZj/q24A9H2WtzGVqO87KR45Tra3HGNsbTQf1njJ/usgp1bB3WXihwV5EUv5kJuwFbV7AeSp1In45dj413XYlbwxaHXFMid2JxO0pclXEk9WZ9h8e1wXOmqmSoJVS4pkSuJmJXM6Bp/vvd6E94XoY6g/OwM+TuIE4yXB5laVNxrAzgw8qvdLFzKWiKuRk7y6RFxWDxSo9jkBY1gwZnCQyhJb0CYaT9LE60mxAXzSe5u55iRMRu4t1i2e9mej1fvZyH82X0zY4G9j7k+W8wY8jnovSy7yO1F9097fUIjdaVF0Xq4fM6yg5qR+GkXDzeg+NrF0QVo92+pajzedS3zntCo3uGObw6z5XjpGMkJp95oUeBY0sjoPPpKm3ZOHweWzk/KYYzlGf7eNN9HFyyD/aV/NRmlVFZ0RvFII+0ZMGLgXySd2DK9Ihj7PBurMqnF4fMJz2iJiKbMfWtKj01eQ7bmWtHnqyhPNE6uY4nH7FG5InOg3B/+QYL7Cm0qcbJTxxnP8M4+yh5sXhpSce7/G4WH0HPlo1jcLZdd071e8y2Sk54j4mrXmjJgh9m5ff4x73uiXf0Svbiy+41jHRcvvewX1zuo51o/6ON56RdgU9jOFmTRki+h8SflOp30HYqvq3En6Xi1W9U4W+8UWeW4H09+ykw3GkzuFrT3ndE96yJjzXX/x9EsrC1UCyXiuUvb2eWP0T/RkzBM3gF81CGCizDR/x1tsn/NHyHH/Bz+m/+af55/kXYdXIiwjyBS1d+/h+jJlj6</latexit> <latexit sha1_base64="I44BxFlG7bHpL+0iM9Bd0gdLPk0=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNi0L1jdiQyIMGESjhItluD2XD3rK7BUrDn/BV/5j/QN/8Cc7M7mkL3d2ztHVP2p2dOd83l3Pbtu6ahh+USr8mJm/cvHX7ztTd3L37Dx4+ms4/3vKdlqeLTd0xHW+7rvnCNGyxGRiBKbZdT2hW3RS1+nGV7LUT4fmGY28EbVfsW1rTNg4NXQtQtb331Wha2sHCwfRMuVjiq1AqVipLS+UKCovv35QWFwvSNAPRtebkp+ZhDxrggA4tsECADQHKJmjgY9uFMpTARd0+dFDnoWSwXcAF5BDbwl4Ce2ioPcbvJj7tRlobn4nTZ7SOXkz8eIgswBxiHOznoUzeCmxvMTNpk7g7zEmxtfFej7gs1AZwhFoVTvbMiqNcAjiEd5yDgTm5rKHs9IilxVWhyAt9WQXI4KKO5AbaPZR1Rso6Fxjjc+5UW43tv7knaelZj/q24A9H2WtzGVqO87KR45Tra3HGNsbTQf1njJ/usgp1bB3WXihwV5EUv5kJuwFbV7AeSp1In45dj413XYlbwxaHXFMid2JxO0pclXEk9WZ9h8e1wXOmqmSoJVS4pkSuJmJXM6Bp/vvd6E94XoY6g/OwM+TuIE4yXB5laVNxrAzgw8qvdLFzKWiKuRk7y6RFxWDxSo9jkBY1gwZnCQyhJb0CYaT9LE60mxAXzSe5u55iRMRu4t1i2e9mej1fvZyH82X0zY4G9j7k+W8wY8jnovSy7yO1F9097fUIjdaVF0Xq4fM6yg5qR+GkXDzeg+NrF0QVo92+pajzedS3zntCo3uGObw6z5XjpGMkJp95oUeBY0sjoPPpKm3ZOHweWzk/KYYzlGf7eNN9HFyyD/aV/NRmlVFZ0RvFII+0ZMGLgXySd2DK9Ihj7PBurMqnF4fMJz2iJiKbMfWtKj01eQ7bmWtHnqyhPNE6uY4nH7FG5InOg3B/+QYL7Cm0qcbJTxxnP8M4+yh5sXhpSce7/G4WH0HPlo1jcLZdd071e8y2Sk54j4mrXmjJgh9m5ff4x73uiXf0Svbiy+41jHRcvvewX1zuo51o/6ON56RdgU9jOFmTRki+h8SflOp30HYqvq3En6Xi1W9U4W+8UWeW4H09+ykw3GkzuFrT3ndE96yJjzXX/x9EsrC1UCyXiuUvb2eWP0T/RkzBM3gF81CGCizDR/x1tsn/NHyHH/Bz+m/+af55/kXYdXIiwjyBS1d+/h+jJlj6</latexit> <latexit sha1_base64="I44BxFlG7bHpL+0iM9Bd0gdLPk0=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNi0L1jdiQyIMGESjhItluD2XD3rK7BUrDn/BV/5j/QN/8Cc7M7mkL3d2ztHVP2p2dOd83l3Pbtu6ahh+USr8mJm/cvHX7ztTd3L37Dx4+ms4/3vKdlqeLTd0xHW+7rvnCNGyxGRiBKbZdT2hW3RS1+nGV7LUT4fmGY28EbVfsW1rTNg4NXQtQtb331Wha2sHCwfRMuVjiq1AqVipLS+UKCovv35QWFwvSNAPRtebkp+ZhDxrggA4tsECADQHKJmjgY9uFMpTARd0+dFDnoWSwXcAF5BDbwl4Ce2ioPcbvJj7tRlobn4nTZ7SOXkz8eIgswBxiHOznoUzeCmxvMTNpk7g7zEmxtfFej7gs1AZwhFoVTvbMiqNcAjiEd5yDgTm5rKHs9IilxVWhyAt9WQXI4KKO5AbaPZR1Rso6Fxjjc+5UW43tv7knaelZj/q24A9H2WtzGVqO87KR45Tra3HGNsbTQf1njJ/usgp1bB3WXihwV5EUv5kJuwFbV7AeSp1In45dj413XYlbwxaHXFMid2JxO0pclXEk9WZ9h8e1wXOmqmSoJVS4pkSuJmJXM6Bp/vvd6E94XoY6g/OwM+TuIE4yXB5laVNxrAzgw8qvdLFzKWiKuRk7y6RFxWDxSo9jkBY1gwZnCQyhJb0CYaT9LE60mxAXzSe5u55iRMRu4t1i2e9mej1fvZyH82X0zY4G9j7k+W8wY8jnovSy7yO1F9097fUIjdaVF0Xq4fM6yg5qR+GkXDzeg+NrF0QVo92+pajzedS3zntCo3uGObw6z5XjpGMkJp95oUeBY0sjoPPpKm3ZOHweWzk/KYYzlGf7eNN9HFyyD/aV/NRmlVFZ0RvFII+0ZMGLgXySd2DK9Ihj7PBurMqnF4fMJz2iJiKbMfWtKj01eQ7bmWtHnqyhPNE6uY4nH7FG5InOg3B/+QYL7Cm0qcbJTxxnP8M4+yh5sXhpSce7/G4WH0HPlo1jcLZdd071e8y2Sk54j4mrXmjJgh9m5ff4x73uiXf0Svbiy+41jHRcvvewX1zuo51o/6ON56RdgU9jOFmTRki+h8SflOp30HYqvq3En6Xi1W9U4W+8UWeW4H09+ykw3GkzuFrT3ndE96yJjzXX/x9EsrC1UCyXiuUvb2eWP0T/RkzBM3gF81CGCizDR/x1tsn/NHyHH/Bz+m/+af55/kXYdXIiwjyBS1d+/h+jJlj6</latexit> <latexit sha1_base64="I44BxFlG7bHpL+0iM9Bd0gdLPk0=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNi0L1jdiQyIMGESjhItluD2XD3rK7BUrDn/BV/5j/QN/8Cc7M7mkL3d2ztHVP2p2dOd83l3Pbtu6ahh+USr8mJm/cvHX7ztTd3L37Dx4+ms4/3vKdlqeLTd0xHW+7rvnCNGyxGRiBKbZdT2hW3RS1+nGV7LUT4fmGY28EbVfsW1rTNg4NXQtQtb331Wha2sHCwfRMuVjiq1AqVipLS+UKCovv35QWFwvSNAPRtebkp+ZhDxrggA4tsECADQHKJmjgY9uFMpTARd0+dFDnoWSwXcAF5BDbwl4Ce2ioPcbvJj7tRlobn4nTZ7SOXkz8eIgswBxiHOznoUzeCmxvMTNpk7g7zEmxtfFej7gs1AZwhFoVTvbMiqNcAjiEd5yDgTm5rKHs9IilxVWhyAt9WQXI4KKO5AbaPZR1Rso6Fxjjc+5UW43tv7knaelZj/q24A9H2WtzGVqO87KR45Tra3HGNsbTQf1njJ/usgp1bB3WXihwV5EUv5kJuwFbV7AeSp1In45dj413XYlbwxaHXFMid2JxO0pclXEk9WZ9h8e1wXOmqmSoJVS4pkSuJmJXM6Bp/vvd6E94XoY6g/OwM+TuIE4yXB5laVNxrAzgw8qvdLFzKWiKuRk7y6RFxWDxSo9jkBY1gwZnCQyhJb0CYaT9LE60mxAXzSe5u55iRMRu4t1i2e9mej1fvZyH82X0zY4G9j7k+W8wY8jnovSy7yO1F9097fUIjdaVF0Xq4fM6yg5qR+GkXDzeg+NrF0QVo92+pajzedS3zntCo3uGObw6z5XjpGMkJp95oUeBY0sjoPPpKm3ZOHweWzk/KYYzlGf7eNN9HFyyD/aV/NRmlVFZ0RvFII+0ZMGLgXySd2DK9Ihj7PBurMqnF4fMJz2iJiKbMfWtKj01eQ7bmWtHnqyhPNE6uY4nH7FG5InOg3B/+QYL7Cm0qcbJTxxnP8M4+yh5sXhpSce7/G4WH0HPlo1jcLZdd071e8y2Sk54j4mrXmjJgh9m5ff4x73uiXf0Svbiy+41jHRcvvewX1zuo51o/6ON56RdgU9jOFmTRki+h8SflOp30HYqvq3En6Xi1W9U4W+8UWeW4H09+ykw3GkzuFrT3ndE96yJjzXX/x9EsrC1UCyXiuUvb2eWP0T/RkzBM3gF81CGCizDR/x1tsn/NHyHH/Bz+m/+af55/kXYdXIiwjyBS1d+/h+jJlj6</latexit> µ2 <latexit sha1_base64="GUAsIdgevDg1rSdx0vcqrnGfFLw=">AAARa3ictVhbTxNREB7whvUClTf1oQpNeLFpUai+ERsSedAgoZRwkWy3S9mwt+wFKA2/wVf9af4DffA/ODO7py10d8/S1p60nZ053zeXc22bjqF7frn8a2r6zt179x/MPMw9evzk6exc/tmOZweuqtVV27Dd3abiaYZuaXVf9w1t13E1xWwaWqN5WiN740xzPd22tv2Oox2aStvSj3VV8VFVPzCDo+WjuYVKqcyvQrlUra6uVqoorHx4W15ZKQjTAkSvTTs/swQH0AIbVAjABA0s8FE2QAEP2z5UoAwO6g6hizoXJZ3tGlxBDrEB9tKwh4LaU/xs49N+pLXwmTg9RqvoxcC3i8gCFBFjYz8XZfJWYHvAzKRN4u4yJ8XWwe9mxGWi1ocT1MpwomdWHOXiwzG85xx0zMlhDWWnRiwBV4UiLwxk5SODgzqSW2h3UVYZKepcYIzHuVNtFbb/5p6kpWc16hvAH46y34oZWo7zspDjnOtrcsYWxtNF/ReMn75FFZrYuqy9kuBuIil+IxN2G3ZuYF2UupE+HbsVG++WFLeJLQ65KUXuxeL2pLga40jqz/ouj2uL50xNytBIqHBDitxIxG5kQNP893rRn/G8DHU652FlyN1GnGC4PsrCJuNYH8KHlV/vYYspaIq5HTvLhEXGYPJKj2MQFjmDAhcJDKElvQJhpIMsdrSbEBfNJ7G7nmNExG7gt8my18v0dr76OY/mSx+YHS3sfczzX2fGkM9B6dXAW2ivenvamzEarSs3itTF5y2UbdSOw0m5uLwHx9fOjypGu30gqfNl1LfJe0Krd4bZvDovpeOkYiQGn3mhRw3HlkZA5dNV2LJxeDy2Yn5SDBcoLw7wpvs4umYf7iv4qS1KozKjG8Uwj7BkwWtD+STvwJTpCcfY5d1Ylk8/DpFPekRtRLZj6luTemrzHLYy1448mSN5onVyG08eYvXIE50H4f7yDZbZU2iTjZOXOM5ehnH2UHJj8cKSjnf4bhYfQd+WjWN4tt12Tg16zLZKzniPiateaMmCH2Xl9/knve6Jd/xK9uPL7jWMdFK+D7BfXO7jnWj/o03mpF2HzxM4WZNGSNxD4k9K+R20k4rvSPEXqXj5jSr8jTfuzNJ4X89+Cox22gyv1rT7jtY7a+JjzQ3+B5Es7CyXKuVS5eu7hbWP0b8RM/ACXsMSVKAKa/AJf53V+fb4HX7Az7m/+fn88/zLsOv0VISZh2uvfPEf/A5XzQ==</latexit> <latexit sha1_base64="GUAsIdgevDg1rSdx0vcqrnGfFLw=">AAARa3ictVhbTxNREB7whvUClTf1oQpNeLFpUai+ERsSedAgoZRwkWy3S9mwt+wFKA2/wVf9af4DffA/ODO7py10d8/S1p60nZ053zeXc22bjqF7frn8a2r6zt179x/MPMw9evzk6exc/tmOZweuqtVV27Dd3abiaYZuaXVf9w1t13E1xWwaWqN5WiN740xzPd22tv2Oox2aStvSj3VV8VFVPzCDo+WjuYVKqcyvQrlUra6uVqoorHx4W15ZKQjTAkSvTTs/swQH0AIbVAjABA0s8FE2QAEP2z5UoAwO6g6hizoXJZ3tGlxBDrEB9tKwh4LaU/xs49N+pLXwmTg9RqvoxcC3i8gCFBFjYz8XZfJWYHvAzKRN4u4yJ8XWwe9mxGWi1ocT1MpwomdWHOXiwzG85xx0zMlhDWWnRiwBV4UiLwxk5SODgzqSW2h3UVYZKepcYIzHuVNtFbb/5p6kpWc16hvAH46y34oZWo7zspDjnOtrcsYWxtNF/ReMn75FFZrYuqy9kuBuIil+IxN2G3ZuYF2UupE+HbsVG++WFLeJLQ65KUXuxeL2pLga40jqz/ouj2uL50xNytBIqHBDitxIxG5kQNP893rRn/G8DHU652FlyN1GnGC4PsrCJuNYH8KHlV/vYYspaIq5HTvLhEXGYPJKj2MQFjmDAhcJDKElvQJhpIMsdrSbEBfNJ7G7nmNExG7gt8my18v0dr76OY/mSx+YHS3sfczzX2fGkM9B6dXAW2ivenvamzEarSs3itTF5y2UbdSOw0m5uLwHx9fOjypGu30gqfNl1LfJe0Krd4bZvDovpeOkYiQGn3mhRw3HlkZA5dNV2LJxeDy2Yn5SDBcoLw7wpvs4umYf7iv4qS1KozKjG8Uwj7BkwWtD+STvwJTpCcfY5d1Ylk8/DpFPekRtRLZj6luTemrzHLYy1448mSN5onVyG08eYvXIE50H4f7yDZbZU2iTjZOXOM5ehnH2UHJj8cKSjnf4bhYfQd+WjWN4tt12Tg16zLZKzniPiateaMmCH2Xl9/knve6Jd/xK9uPL7jWMdFK+D7BfXO7jnWj/o03mpF2HzxM4WZNGSNxD4k9K+R20k4rvSPEXqXj5jSr8jTfuzNJ4X89+Cox22gyv1rT7jtY7a+JjzQ3+B5Es7CyXKuVS5eu7hbWP0b8RM/ACXsMSVKAKa/AJf53V+fb4HX7Az7m/+fn88/zLsOv0VISZh2uvfPEf/A5XzQ==</latexit> <latexit sha1_base64="GUAsIdgevDg1rSdx0vcqrnGfFLw=">AAARa3ictVhbTxNREB7whvUClTf1oQpNeLFpUai+ERsSedAgoZRwkWy3S9mwt+wFKA2/wVf9af4DffA/ODO7py10d8/S1p60nZ053zeXc22bjqF7frn8a2r6zt179x/MPMw9evzk6exc/tmOZweuqtVV27Dd3abiaYZuaXVf9w1t13E1xWwaWqN5WiN740xzPd22tv2Oox2aStvSj3VV8VFVPzCDo+WjuYVKqcyvQrlUra6uVqoorHx4W15ZKQjTAkSvTTs/swQH0AIbVAjABA0s8FE2QAEP2z5UoAwO6g6hizoXJZ3tGlxBDrEB9tKwh4LaU/xs49N+pLXwmTg9RqvoxcC3i8gCFBFjYz8XZfJWYHvAzKRN4u4yJ8XWwe9mxGWi1ocT1MpwomdWHOXiwzG85xx0zMlhDWWnRiwBV4UiLwxk5SODgzqSW2h3UVYZKepcYIzHuVNtFbb/5p6kpWc16hvAH46y34oZWo7zspDjnOtrcsYWxtNF/ReMn75FFZrYuqy9kuBuIil+IxN2G3ZuYF2UupE+HbsVG++WFLeJLQ65KUXuxeL2pLga40jqz/ouj2uL50xNytBIqHBDitxIxG5kQNP893rRn/G8DHU652FlyN1GnGC4PsrCJuNYH8KHlV/vYYspaIq5HTvLhEXGYPJKj2MQFjmDAhcJDKElvQJhpIMsdrSbEBfNJ7G7nmNExG7gt8my18v0dr76OY/mSx+YHS3sfczzX2fGkM9B6dXAW2ivenvamzEarSs3itTF5y2UbdSOw0m5uLwHx9fOjypGu30gqfNl1LfJe0Krd4bZvDovpeOkYiQGn3mhRw3HlkZA5dNV2LJxeDy2Yn5SDBcoLw7wpvs4umYf7iv4qS1KozKjG8Uwj7BkwWtD+STvwJTpCcfY5d1Ylk8/DpFPekRtRLZj6luTemrzHLYy1448mSN5onVyG08eYvXIE50H4f7yDZbZU2iTjZOXOM5ehnH2UHJj8cKSjnf4bhYfQd+WjWN4tt12Tg16zLZKzniPiateaMmCH2Xl9/knve6Jd/xK9uPL7jWMdFK+D7BfXO7jnWj/o03mpF2HzxM4WZNGSNxD4k9K+R20k4rvSPEXqXj5jSr8jTfuzNJ4X89+Cox22gyv1rT7jtY7a+JjzQ3+B5Es7CyXKuVS5eu7hbWP0b8RM/ACXsMSVKAKa/AJf53V+fb4HX7Az7m/+fn88/zLsOv0VISZh2uvfPEf/A5XzQ==</latexit> <latexit sha1_base64="GUAsIdgevDg1rSdx0vcqrnGfFLw=">AAARa3ictVhbTxNREB7whvUClTf1oQpNeLFpUai+ERsSedAgoZRwkWy3S9mwt+wFKA2/wVf9af4DffA/ODO7py10d8/S1p60nZ053zeXc22bjqF7frn8a2r6zt179x/MPMw9evzk6exc/tmOZweuqtVV27Dd3abiaYZuaXVf9w1t13E1xWwaWqN5WiN740xzPd22tv2Oox2aStvSj3VV8VFVPzCDo+WjuYVKqcyvQrlUra6uVqoorHx4W15ZKQjTAkSvTTs/swQH0AIbVAjABA0s8FE2QAEP2z5UoAwO6g6hizoXJZ3tGlxBDrEB9tKwh4LaU/xs49N+pLXwmTg9RqvoxcC3i8gCFBFjYz8XZfJWYHvAzKRN4u4yJ8XWwe9mxGWi1ocT1MpwomdWHOXiwzG85xx0zMlhDWWnRiwBV4UiLwxk5SODgzqSW2h3UVYZKepcYIzHuVNtFbb/5p6kpWc16hvAH46y34oZWo7zspDjnOtrcsYWxtNF/ReMn75FFZrYuqy9kuBuIil+IxN2G3ZuYF2UupE+HbsVG++WFLeJLQ65KUXuxeL2pLga40jqz/ouj2uL50xNytBIqHBDitxIxG5kQNP893rRn/G8DHU652FlyN1GnGC4PsrCJuNYH8KHlV/vYYspaIq5HTvLhEXGYPJKj2MQFjmDAhcJDKElvQJhpIMsdrSbEBfNJ7G7nmNExG7gt8my18v0dr76OY/mSx+YHS3sfczzX2fGkM9B6dXAW2ivenvamzEarSs3itTF5y2UbdSOw0m5uLwHx9fOjypGu30gqfNl1LfJe0Krd4bZvDovpeOkYiQGn3mhRw3HlkZA5dNV2LJxeDy2Yn5SDBcoLw7wpvs4umYf7iv4qS1KozKjG8Uwj7BkwWtD+STvwJTpCcfY5d1Ylk8/DpFPekRtRLZj6luTemrzHLYy1448mSN5onVyG08eYvXIE50H4f7yDZbZU2iTjZOXOM5ehnH2UHJj8cKSjnf4bhYfQd+WjWN4tt12Tg16zLZKzniPiateaMmCH2Xl9/knve6Jd/xK9uPL7jWMdFK+D7BfXO7jnWj/o03mpF2HzxM4WZNGSNxD4k9K+R20k4rvSPEXqXj5jSr8jTfuzNJ4X89+Cox22gyv1rT7jtY7a+JjzQ3+B5Es7CyXKuVS5eu7hbWP0b8RM/ACXsMSVKAKa/AJf53V+fb4HX7Az7m/+fn88/zLsOv0VISZh2uvfPEf/A5XzQ==</latexit> µ3 <latexit sha1_base64="pHJXcX1P3sPcv7xgBKhrGoZwhuQ=">AAARa3ictVhbTxNREB68Yr1ReVMfqtCEF0mLJvpIbEjkQYOEUsJFst0eyoa9ZS9A2fAbfNWf5j/QB/+DM7N72sJu9yxt7Unb2ZnzfXM517btmoYf1Gq/Zm7dvnP33v3ZB6WHjx4/eTpXfrbtO6Gni6bumI6309Z8YRq2aAZGYIod1xOa1TZFq33SIHvrVHi+4dhbQc8VB5bWtY0jQ9cCVDX3rfDw7eHcQn25xq9KX6hd1yxA8tpwyrNLsA8dcECHECwQYEOAsgka+Nj2oA41cFF3ABHqPJQMtgu4hBJiQ+wlsIeG2hP87OLTXqK18Zk4fUbr6MXEt4fIClQR42A/D2XyVmF7yMykHcUdMSfF1sPvdsJloTaAY9SqcLJnURzlEsARfOAcDMzJZQ1lpycsIVeFIq8MZRUgg4s6kjto91DWGSnrXGGMz7lTbTW2/+aepKVnPekbwh+OctCqBVqJ87KR44zra3HGNsYTof4Lxk/fsgptbBFrLxW460iK3yyE3YLta1gPpSjR52M3M+PdVOI2sGUhN5TI3UzcrhLXYBxJg1kf8bh2eM40lAytERVuKZHrI7HrBdA0//1+9Kc8L2OdwXnYBXJ3ECcZro6ytKk41lL4uPJrfWw1B00xdzNnmbSoGCxe6VkM0qJm0OB8BENsya9AHOkwi5PsJsRF80nurmcYEbGb+G2x7PczvZmvQc7j+TKGZkcHex/x/DeYMeZzUXo19Jbay/6e9maCRuvKSyL18HkTZQe1k3BSLh7vwdm1C5KK0W4fKup8kfRt857Q6Z9hDq/OC+U46RiJyWde7FHg2NII6Hy6SlsxDp/HVs5PiuEc5cUh3nwfh1fs6b6Sn9qiMioruVGkeaSlCF6k8hm9A1OmxxxjxLuxKp9BHDKf/Ii6iOxm1Leh9NTlOWwXrh15ssbyROvkJp58xBqJJzoP4v3lG6ywp9imGid/5Dj7BcbZR8nLxEtLPt7lu1l2BANbMY70bLvpnBr2WGyVnPIek1W92FIEP87KH/BPe90T7+SVHMRX3Gsc6bR872O/rNwnO9H+R5vOSbsGn6dwso4aIXkPyT4p1XfQXi6+p8Sf5+LVN6r4N96kM0vwvl78FBjvtEmv1rz7juifNdmxljL/g0gJ2yvL9dpy/eu7hdWPyb8Rs/ACXsMS1OE9rMIn/HXW5Nvjd/gBP+f+lufLz8sv4663ZhLMPFx5lav/ABUxV5I=</latexit> <latexit sha1_base64="pHJXcX1P3sPcv7xgBKhrGoZwhuQ=">AAARa3ictVhbTxNREB68Yr1ReVMfqtCEF0mLJvpIbEjkQYOEUsJFst0eyoa9ZS9A2fAbfNWf5j/QB/+DM7N72sJu9yxt7Unb2ZnzfXM517btmoYf1Gq/Zm7dvnP33v3ZB6WHjx4/eTpXfrbtO6Gni6bumI6309Z8YRq2aAZGYIod1xOa1TZFq33SIHvrVHi+4dhbQc8VB5bWtY0jQ9cCVDX3rfDw7eHcQn25xq9KX6hd1yxA8tpwyrNLsA8dcECHECwQYEOAsgka+Nj2oA41cFF3ABHqPJQMtgu4hBJiQ+wlsIeG2hP87OLTXqK18Zk4fUbr6MXEt4fIClQR42A/D2XyVmF7yMykHcUdMSfF1sPvdsJloTaAY9SqcLJnURzlEsARfOAcDMzJZQ1lpycsIVeFIq8MZRUgg4s6kjto91DWGSnrXGGMz7lTbTW2/+aepKVnPekbwh+OctCqBVqJ87KR44zra3HGNsYTof4Lxk/fsgptbBFrLxW460iK3yyE3YLta1gPpSjR52M3M+PdVOI2sGUhN5TI3UzcrhLXYBxJg1kf8bh2eM40lAytERVuKZHrI7HrBdA0//1+9Kc8L2OdwXnYBXJ3ECcZro6ytKk41lL4uPJrfWw1B00xdzNnmbSoGCxe6VkM0qJm0OB8BENsya9AHOkwi5PsJsRF80nurmcYEbGb+G2x7PczvZmvQc7j+TKGZkcHex/x/DeYMeZzUXo19Jbay/6e9maCRuvKSyL18HkTZQe1k3BSLh7vwdm1C5KK0W4fKup8kfRt857Q6Z9hDq/OC+U46RiJyWde7FHg2NII6Hy6SlsxDp/HVs5PiuEc5cUh3nwfh1fs6b6Sn9qiMioruVGkeaSlCF6k8hm9A1OmxxxjxLuxKp9BHDKf/Ii6iOxm1Leh9NTlOWwXrh15ssbyROvkJp58xBqJJzoP4v3lG6ywp9imGid/5Dj7BcbZR8nLxEtLPt7lu1l2BANbMY70bLvpnBr2WGyVnPIek1W92FIEP87KH/BPe90T7+SVHMRX3Gsc6bR872O/rNwnO9H+R5vOSbsGn6dwso4aIXkPyT4p1XfQXi6+p8Sf5+LVN6r4N96kM0vwvl78FBjvtEmv1rz7juifNdmxljL/g0gJ2yvL9dpy/eu7hdWPyb8Rs/ACXsMS1OE9rMIn/HXW5Nvjd/gBP+f+lufLz8sv4663ZhLMPFx5lav/ABUxV5I=</latexit> <latexit sha1_base64="pHJXcX1P3sPcv7xgBKhrGoZwhuQ=">AAARa3ictVhbTxNREB68Yr1ReVMfqtCEF0mLJvpIbEjkQYOEUsJFst0eyoa9ZS9A2fAbfNWf5j/QB/+DM7N72sJu9yxt7Unb2ZnzfXM517btmoYf1Gq/Zm7dvnP33v3ZB6WHjx4/eTpXfrbtO6Gni6bumI6309Z8YRq2aAZGYIod1xOa1TZFq33SIHvrVHi+4dhbQc8VB5bWtY0jQ9cCVDX3rfDw7eHcQn25xq9KX6hd1yxA8tpwyrNLsA8dcECHECwQYEOAsgka+Nj2oA41cFF3ABHqPJQMtgu4hBJiQ+wlsIeG2hP87OLTXqK18Zk4fUbr6MXEt4fIClQR42A/D2XyVmF7yMykHcUdMSfF1sPvdsJloTaAY9SqcLJnURzlEsARfOAcDMzJZQ1lpycsIVeFIq8MZRUgg4s6kjto91DWGSnrXGGMz7lTbTW2/+aepKVnPekbwh+OctCqBVqJ87KR44zra3HGNsYTof4Lxk/fsgptbBFrLxW460iK3yyE3YLta1gPpSjR52M3M+PdVOI2sGUhN5TI3UzcrhLXYBxJg1kf8bh2eM40lAytERVuKZHrI7HrBdA0//1+9Kc8L2OdwXnYBXJ3ECcZro6ytKk41lL4uPJrfWw1B00xdzNnmbSoGCxe6VkM0qJm0OB8BENsya9AHOkwi5PsJsRF80nurmcYEbGb+G2x7PczvZmvQc7j+TKGZkcHex/x/DeYMeZzUXo19Jbay/6e9maCRuvKSyL18HkTZQe1k3BSLh7vwdm1C5KK0W4fKup8kfRt857Q6Z9hDq/OC+U46RiJyWde7FHg2NII6Hy6SlsxDp/HVs5PiuEc5cUh3nwfh1fs6b6Sn9qiMioruVGkeaSlCF6k8hm9A1OmxxxjxLuxKp9BHDKf/Ii6iOxm1Leh9NTlOWwXrh15ssbyROvkJp58xBqJJzoP4v3lG6ywp9imGid/5Dj7BcbZR8nLxEtLPt7lu1l2BANbMY70bLvpnBr2WGyVnPIek1W92FIEP87KH/BPe90T7+SVHMRX3Gsc6bR872O/rNwnO9H+R5vOSbsGn6dwso4aIXkPyT4p1XfQXi6+p8Sf5+LVN6r4N96kM0vwvl78FBjvtEmv1rz7juifNdmxljL/g0gJ2yvL9dpy/eu7hdWPyb8Rs/ACXsMS1OE9rMIn/HXW5Nvjd/gBP+f+lufLz8sv4663ZhLMPFx5lav/ABUxV5I=</latexit> <latexit sha1_base64="pHJXcX1P3sPcv7xgBKhrGoZwhuQ=">AAARa3ictVhbTxNREB68Yr1ReVMfqtCEF0mLJvpIbEjkQYOEUsJFst0eyoa9ZS9A2fAbfNWf5j/QB/+DM7N72sJu9yxt7Unb2ZnzfXM517btmoYf1Gq/Zm7dvnP33v3ZB6WHjx4/eTpXfrbtO6Gni6bumI6309Z8YRq2aAZGYIod1xOa1TZFq33SIHvrVHi+4dhbQc8VB5bWtY0jQ9cCVDX3rfDw7eHcQn25xq9KX6hd1yxA8tpwyrNLsA8dcECHECwQYEOAsgka+Nj2oA41cFF3ABHqPJQMtgu4hBJiQ+wlsIeG2hP87OLTXqK18Zk4fUbr6MXEt4fIClQR42A/D2XyVmF7yMykHcUdMSfF1sPvdsJloTaAY9SqcLJnURzlEsARfOAcDMzJZQ1lpycsIVeFIq8MZRUgg4s6kjto91DWGSnrXGGMz7lTbTW2/+aepKVnPekbwh+OctCqBVqJ87KR44zra3HGNsYTof4Lxk/fsgptbBFrLxW460iK3yyE3YLta1gPpSjR52M3M+PdVOI2sGUhN5TI3UzcrhLXYBxJg1kf8bh2eM40lAytERVuKZHrI7HrBdA0//1+9Kc8L2OdwXnYBXJ3ECcZro6ytKk41lL4uPJrfWw1B00xdzNnmbSoGCxe6VkM0qJm0OB8BENsya9AHOkwi5PsJsRF80nurmcYEbGb+G2x7PczvZmvQc7j+TKGZkcHex/x/DeYMeZzUXo19Jbay/6e9maCRuvKSyL18HkTZQe1k3BSLh7vwdm1C5KK0W4fKup8kfRt857Q6Z9hDq/OC+U46RiJyWde7FHg2NII6Hy6SlsxDp/HVs5PiuEc5cUh3nwfh1fs6b6Sn9qiMioruVGkeaSlCF6k8hm9A1OmxxxjxLuxKp9BHDKf/Ii6iOxm1Leh9NTlOWwXrh15ssbyROvkJp58xBqJJzoP4v3lG6ywp9imGid/5Dj7BcbZR8nLxEtLPt7lu1l2BANbMY70bLvpnBr2WGyVnPIek1W92FIEP87KH/BPe90T7+SVHMRX3Gsc6bR872O/rNwnO9H+R5vOSbsGn6dwso4aIXkPyT4p1XfQXi6+p8Sf5+LVN6r4N96kM0vwvl78FBjvtEmv1rz7juifNdmxljL/g0gJ2yvL9dpy/eu7hdWPyb8Rs/ACXsMS1OE9rMIn/HXW5Nvjd/gBP+f+lufLz8sv4663ZhLMPFx5lav/ABUxV5I=</latexit> ⌃3 <latexit sha1_base64="VeviXESsFNmL/SyYgMTtfptTo6c=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNiyb6SGxI5EGDCJRwkexuD2XD3rIXoGz4E77qH/Mf6Js/wZnZPW2h2z1LW/ek3dmZ831zObdtdc8yg7BW+zU1fePmrdt3Zu6W7t1/8PDRbPnxVuBGviE2Dddy/W1dC4RlOmIzNENLbHu+0GzdEk39uEH25onwA9N1NsKOJ/Ztre2Yh6ahhaja3vtqtm3t4M3B7Fy9WuOr0hVqVzVzkF5rbnlmEfagBS4YEIENAhwIUbZAgwDbLtShBh7q9iFGnY+SyXYBF1BCbIS9BPbQUHuM32182k21Dj4TZ8BoA71Y+PERWYEFxLjYz0eZvFXYHjEzaYdxx8xJsXXwrqdcNmpDOEKtCid7FsVRLiEcwnvOwcScPNZQdkbKEnFVKPJKX1YhMnioI7mFdh9lg5GyzhXGBJw71VZj+2/uSVp6NtK+EfzhKHttoUArcV4OcpxyfW3O2MF4YtR/xvjpLqugY4tZe6HAXUVS/FYh7AZsXcH6KMWpPh+7nhnvuhK3hi0LuaZE7mTidpS4BuNI6s36mMe1xXOmoWRoDqlwU4lcHYpdLYCm+R90oz/heZnoTM7DKZC7izjJcHmUpU3FsTKATyq/0sUu5KAp5nbmLJMWFYPNKz2LQVrUDBqcDWFILPkVSCLtZ3HT3YS4aD7J3fUUIyJ2C+82y0E30+v56uU8mi+zb3a0sPchz3+TGRM+D6WXfR+pvejuaa/HaLSu/DRSH5/XUXZROw4n5eLzHpxduzCtGO32kaLO52lfnfeEVvcMc3l1nivHycBILD7zEo8Cx5ZGwODTVdqKcQQ8tnJ+UgxnKM/38eb7OLhkH+wr+anNK6Oy0zeKQR5pKYIXA/kM34Ep0yOOMebdWJVPLw6ZT35EbUS2M+rbUHpq8xx2CteOPNkjeaJ1ch1PAWLN1BOdB8n+8g2W2FNiU41TMHScgwLjHKDkZ+KlJR/v8btZdgQ9WzGOwdl23TnV77HYKjnhPSareomlCH6Uld/jn/S6J97xK9mLr7jXJNJJ+d7Dflm5j3ei/Y82mZN2BT5N4GQdNkLyPST7pFS/g3Zy8R0l/iwXr36jSn7jjTuzBO/rxU+B0U6bwdWa974jumdNdqylzP8gBoStpWq9Vq1/eTu3/CH9N2IGnsErWIQ6vINl+Ii/zjb5n4bv8AN+zv4tPy0/L79Iuk5PpZgncOkqL/4DvDpYvw==</latexit> <latexit sha1_base64="VeviXESsFNmL/SyYgMTtfptTo6c=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNiyb6SGxI5EGDCJRwkexuD2XD3rIXoGz4E77qH/Mf6Js/wZnZPW2h2z1LW/ek3dmZ831zObdtdc8yg7BW+zU1fePmrdt3Zu6W7t1/8PDRbPnxVuBGviE2Dddy/W1dC4RlOmIzNENLbHu+0GzdEk39uEH25onwA9N1NsKOJ/Ztre2Yh6ahhaja3vtqtm3t4M3B7Fy9WuOr0hVqVzVzkF5rbnlmEfagBS4YEIENAhwIUbZAgwDbLtShBh7q9iFGnY+SyXYBF1BCbIS9BPbQUHuM32182k21Dj4TZ8BoA71Y+PERWYEFxLjYz0eZvFXYHjEzaYdxx8xJsXXwrqdcNmpDOEKtCid7FsVRLiEcwnvOwcScPNZQdkbKEnFVKPJKX1YhMnioI7mFdh9lg5GyzhXGBJw71VZj+2/uSVp6NtK+EfzhKHttoUArcV4OcpxyfW3O2MF4YtR/xvjpLqugY4tZe6HAXUVS/FYh7AZsXcH6KMWpPh+7nhnvuhK3hi0LuaZE7mTidpS4BuNI6s36mMe1xXOmoWRoDqlwU4lcHYpdLYCm+R90oz/heZnoTM7DKZC7izjJcHmUpU3FsTKATyq/0sUu5KAp5nbmLJMWFYPNKz2LQVrUDBqcDWFILPkVSCLtZ3HT3YS4aD7J3fUUIyJ2C+82y0E30+v56uU8mi+zb3a0sPchz3+TGRM+D6WXfR+pvejuaa/HaLSu/DRSH5/XUXZROw4n5eLzHpxduzCtGO32kaLO52lfnfeEVvcMc3l1nivHycBILD7zEo8Cx5ZGwODTVdqKcQQ8tnJ+UgxnKM/38eb7OLhkH+wr+anNK6Oy0zeKQR5pKYIXA/kM34Ep0yOOMebdWJVPLw6ZT35EbUS2M+rbUHpq8xx2CteOPNkjeaJ1ch1PAWLN1BOdB8n+8g2W2FNiU41TMHScgwLjHKDkZ+KlJR/v8btZdgQ9WzGOwdl23TnV77HYKjnhPSareomlCH6Uld/jn/S6J97xK9mLr7jXJNJJ+d7Dflm5j3ei/Y82mZN2BT5N4GQdNkLyPST7pFS/g3Zy8R0l/iwXr36jSn7jjTuzBO/rxU+B0U6bwdWa974jumdNdqylzP8gBoStpWq9Vq1/eTu3/CH9N2IGnsErWIQ6vINl+Ii/zjb5n4bv8AN+zv4tPy0/L79Iuk5PpZgncOkqL/4DvDpYvw==</latexit> <latexit sha1_base64="VeviXESsFNmL/SyYgMTtfptTo6c=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNiyb6SGxI5EGDCJRwkexuD2XD3rIXoGz4E77qH/Mf6Js/wZnZPW2h2z1LW/ek3dmZ831zObdtdc8yg7BW+zU1fePmrdt3Zu6W7t1/8PDRbPnxVuBGviE2Dddy/W1dC4RlOmIzNENLbHu+0GzdEk39uEH25onwA9N1NsKOJ/Ztre2Yh6ahhaja3vtqtm3t4M3B7Fy9WuOr0hVqVzVzkF5rbnlmEfagBS4YEIENAhwIUbZAgwDbLtShBh7q9iFGnY+SyXYBF1BCbIS9BPbQUHuM32182k21Dj4TZ8BoA71Y+PERWYEFxLjYz0eZvFXYHjEzaYdxx8xJsXXwrqdcNmpDOEKtCid7FsVRLiEcwnvOwcScPNZQdkbKEnFVKPJKX1YhMnioI7mFdh9lg5GyzhXGBJw71VZj+2/uSVp6NtK+EfzhKHttoUArcV4OcpxyfW3O2MF4YtR/xvjpLqugY4tZe6HAXUVS/FYh7AZsXcH6KMWpPh+7nhnvuhK3hi0LuaZE7mTidpS4BuNI6s36mMe1xXOmoWRoDqlwU4lcHYpdLYCm+R90oz/heZnoTM7DKZC7izjJcHmUpU3FsTKATyq/0sUu5KAp5nbmLJMWFYPNKz2LQVrUDBqcDWFILPkVSCLtZ3HT3YS4aD7J3fUUIyJ2C+82y0E30+v56uU8mi+zb3a0sPchz3+TGRM+D6WXfR+pvejuaa/HaLSu/DRSH5/XUXZROw4n5eLzHpxduzCtGO32kaLO52lfnfeEVvcMc3l1nivHycBILD7zEo8Cx5ZGwODTVdqKcQQ8tnJ+UgxnKM/38eb7OLhkH+wr+anNK6Oy0zeKQR5pKYIXA/kM34Ep0yOOMebdWJVPLw6ZT35EbUS2M+rbUHpq8xx2CteOPNkjeaJ1ch1PAWLN1BOdB8n+8g2W2FNiU41TMHScgwLjHKDkZ+KlJR/v8btZdgQ9WzGOwdl23TnV77HYKjnhPSareomlCH6Uld/jn/S6J97xK9mLr7jXJNJJ+d7Dflm5j3ei/Y82mZN2BT5N4GQdNkLyPST7pFS/g3Zy8R0l/iwXr36jSn7jjTuzBO/rxU+B0U6bwdWa974jumdNdqylzP8gBoStpWq9Vq1/eTu3/CH9N2IGnsErWIQ6vINl+Ii/zjb5n4bv8AN+zv4tPy0/L79Iuk5PpZgncOkqL/4DvDpYvw==</latexit> <latexit sha1_base64="VeviXESsFNmL/SyYgMTtfptTo6c=">AAARbnictVhbTxNREB7whvVGNfHFGKtAwotNiyb6SGxI5EGDCJRwkexuD2XD3rIXoGz4E77qH/Mf6Js/wZnZPW2h2z1LW/ek3dmZ831zObdtdc8yg7BW+zU1fePmrdt3Zu6W7t1/8PDRbPnxVuBGviE2Dddy/W1dC4RlOmIzNENLbHu+0GzdEk39uEH25onwA9N1NsKOJ/Ztre2Yh6ahhaja3vtqtm3t4M3B7Fy9WuOr0hVqVzVzkF5rbnlmEfagBS4YEIENAhwIUbZAgwDbLtShBh7q9iFGnY+SyXYBF1BCbIS9BPbQUHuM32182k21Dj4TZ8BoA71Y+PERWYEFxLjYz0eZvFXYHjEzaYdxx8xJsXXwrqdcNmpDOEKtCid7FsVRLiEcwnvOwcScPNZQdkbKEnFVKPJKX1YhMnioI7mFdh9lg5GyzhXGBJw71VZj+2/uSVp6NtK+EfzhKHttoUArcV4OcpxyfW3O2MF4YtR/xvjpLqugY4tZe6HAXUVS/FYh7AZsXcH6KMWpPh+7nhnvuhK3hi0LuaZE7mTidpS4BuNI6s36mMe1xXOmoWRoDqlwU4lcHYpdLYCm+R90oz/heZnoTM7DKZC7izjJcHmUpU3FsTKATyq/0sUu5KAp5nbmLJMWFYPNKz2LQVrUDBqcDWFILPkVSCLtZ3HT3YS4aD7J3fUUIyJ2C+82y0E30+v56uU8mi+zb3a0sPchz3+TGRM+D6WXfR+pvejuaa/HaLSu/DRSH5/XUXZROw4n5eLzHpxduzCtGO32kaLO52lfnfeEVvcMc3l1nivHycBILD7zEo8Cx5ZGwODTVdqKcQQ8tnJ+UgxnKM/38eb7OLhkH+wr+anNK6Oy0zeKQR5pKYIXA/kM34Ep0yOOMebdWJVPLw6ZT35EbUS2M+rbUHpq8xx2CteOPNkjeaJ1ch1PAWLN1BOdB8n+8g2W2FNiU41TMHScgwLjHKDkZ+KlJR/v8btZdgQ9WzGOwdl23TnV77HYKjnhPSareomlCH6Uld/jn/S6J97xK9mLr7jXJNJJ+d7Dflm5j3ei/Y82mZN2BT5N4GQdNkLyPST7pFS/g3Zy8R0l/iwXr36jSn7jjTuzBO/rxU+B0U6bwdWa974jumdNdqylzP8gBoStpWq9Vq1/eTu3/CH9N2IGnsErWIQ6vINl+Ii/zjb5n4bv8AN+zv4tPy0/L79Iuk5PpZgncOkqL/4DvDpYvw==</latexit> GMM on patches Style, texture editing, restoration [Leclaire, Rabin 2019] [EPLL 2011, SPLE 2013, HDMI 2018] Autoencoders, GMM on latent space K ∑ k=1 πk 𝒩 (mk , Σk ) GMMd (∞) = ⋃ K≥1 GMMd (K) [Saseendran et al., Neurips 2021]
  3. Wasserstein Distance , de fi nes a distance between probability

    measures. c(x, y) = d(x, y)p with p ≥ 1 and d a distance Wp (μ0 , μ1 ) = ( inf γ∈Π(μ0 ,μ1 ) ∬ c(x, y)dγ(x, y)) 1 p = inf (X,Y)∼(μ0 ,μ1 ) [ 𝔼 [dp(X, Y)]|] 1/p μ0 μ1 c(x, y) x y p=2 or 1 often used in applications Wasserstein distances and barycenters [Solomon et al. 2015] Wasserstein Barycenter of for weights (νi )i∈{1,…,p} ∑ i λi = 1 ν* ∈ argmin ρ p ∑ i=1 λi W2 2 (νi , ρ) [Agueh, Carlier 2011]: existence and unicity of if the vanish on small sets. ν* νi
  4. OT between Gaussians, quadratic cost Gaussian distributions on μi =

    𝒩 (mi , Σi ), i ∈ {0,1,…, I − 1} ℝd W2 2 (μ0 , μ1 ) = ∥m0 − m1 ∥2 + tr ( Σ0 + Σ1 − 2 (Σ1 2 0 Σ1 Σ1 2 0) 1 2 ) B2(Σ0 ,Σ1 ) A ffi ne optimal map T(x) = m1 + Σ−1 2 0 (Σ1 2 0 Σ1 Σ1 2 0) 1 2 Σ− 1 2 0 (x − m0 ) Barycenter [Agueh, Carlier 2011]: , 𝒩 (m*, Σ*) = argmin ρ I−1 ∑ i=1 λi W2 2 (μi , ρ) m* = ∑ λi mi Σ* = min Σ ∑ i λi B2(Σ, Σi ) [Dowson, Landau, 82] ,[Givens, Shortt 84]… Texture mixing [Xia et al, 2014 ] [Vacher et al., 2020] FID [Heusel et al., 2017]
  5. Optimal transport between GMM? µ0 = N(0, 1) µ1 =

    1 2 ( 1 + 1) <latexit sha1_base64="ZVt/OP7bSysYv1eFvP9HxOreUXA=">AAADC3icjVHLahRBFD1pX3F8jbp0UzgoE9SmajJk3AjBgLiSCE4SSIehuqYmaVL9oLpaCMN8gn/izl3I1h9wI0E/QP/CW2UP6CLobbrr1Ln3nK5bN61MVjvOz1eiS5evXL22er1z4+at23e6d+/t1GVjlR6r0pR2L5W1Nlmhxy5zRu9VVss8NXo3Pd7y+d332tZZWbxzJ5U+yOVhkc0yJR1Rk+6rJG8mnD1+wZJcuiMlzfzNos+firVOknR8UoTkzErFBBuwfjLVxsnJ/JlYPGmxWJt0ezzmGxQjxmMxFGK0QWCdluGIiZiH6KGN7bL7FQmmKKHQIIdGAUfYQKKmZx8CHBVxB5gTZwllIa+xQIe0DVVpqpDEHtP3kHb7LVvQ3nvWQa3oL4ZeS0qGR6Qpqc4S9n9jId8EZ89e5D0Pnv5sJ7SmrVdOrMMRsf/SLSv/V+d7cZjheegho56qwPjuVOvShFvxJ2d/dOXIoSLO4ynlLWEVlMt7ZkFTh9793cqQ/xEqPev3qq1t8NOfkga8nCK7GOwMYrEeD94Oe5sv21Gv4gEeok/zHGETr7GNMXl/xBd8w/foQ/QpOo3OfpdGK63mPv6K6PMvVWenig==</latexit> ft(x) = 1 1 t ✓ g ✓ x + t 1 t ◆ 1x< t + g ✓ x t 1 t ◆ 1x>t ◆ <latexit sha1_base64="WnZvlS5KrcTP/lMaSOpr93XISeA=">AAADUXicjVFNb9NAEB07fJQUaCgXJC5LI6RUVS27jRoOFFVw4Vgk0laqq8jerhOr/tJ6XaWy8g/4dz1U/Qdw5caNt2tHAokCE8U7++a9tzs7YZHEpXLdW8vu3Lv/4OHKo+7q4ydP13rP1o/KvJJcjHme5PIkDEqRxJkYq1gl4qSQIkjDRByHFx90/fhSyDLOs8/qqhBnaTDN4ijmgQI06X2JJmow32T7zI9kwGtvUXvbasH8RERqMG2WLkM09fmWahi+jKcztemngZqFEXSTev4W+Bb7g2j7L6J3+rQGn/T6ruPuIUbMdbyh5432kOxiGY6Y57gm+tTGYd67IZ/OKSdOFaUkKCOFPKGASvxOySOXCmBnVAOTyGJTF7SgLrQVWAKMAOgFvlPsTls0w157lkbNcUqCv4SS0WtocvAkcn0aM/XKOGv0Lu/aeOq7XWENW68UqKIZ0H/plsz/1eleFEX0xvQQo6fCILo73rpU5lX0zdkvXSk4FMB0fo66RM6NcvnOzGhK07t+28DUvxqmRvWet9yKvulbYsDLKbK7k6Mdx9t1dj4N+wfv21Gv0EvaoAHmOaID+kiHNIb3d+uF9crasK/tHx3q2A3VtlrNc/otOqs/ASwfwAk=</latexit> density of µt : <latexit sha1_base64="nsrrxKD6/o8OAsXeQstJtO92muQ=">AAAC4HicjVFNT9tAFBwMLRTaEuiRy4qoEifLhihBnBBcegSJABJBke1s6Ap/yV4joogDN26IK3+Aa/trEP8A/kVnF0eiB9Q+y96382bG+/aFeaxK7XlPU870zIePs3Of5hc+f/m62FhaPiyzqohkN8rirDgOg1LGKpVdrXQsj/NCBkkYy6PwfNfUjy5kUaosPdCjXJ4mwVmqhioKNKF+Y6Wn5aUeD2RaKj0S2VBciV5S9bXYEv1G03O9NqMjPNdv+X6nzWSDS6sjfNez0UQde1njET0MkCFChQQSKTTzGAFKPifw4SEndooxsYKZsnWJK8xTW5ElyQiInvN7xt1JjabcG8/SqiP+JeZbUCnwnZqMvIK5+Zuw9co6G/Q977H1NGcbcQ1rr4Soxk+i/9JNmP+rM71oDLFpe1DsKbeI6S6qXSp7K+bk4k1Xmg45MZMPWC+YR1Y5uWdhNaXt3dxtYOvPlmlQs49qboUXc0oOeDJF8X5yuO76G+76fqu5vVOPeg4rWMUa59nBNn5gD116X+MBv/DbCZ0b59a5e6U6U7XmG/4K5/4PYpSaZg==</latexit> • • • μ0 = 𝒩 (0,1) μ1 = 1 2 𝒩 (−5,0.1) + 1 2 𝒩 (5,0.1) OT plans / barycenters between GMM are usually not GMM themselves
  6. Prop. [D.,D.] metric on Geodesic space. MW2 GMMd (∞) .

    Optimal transport between GMM? Def. [D., Desolneux 2019] MW2 2 (μ0 , μ1 ) := inf γ∈Π(μ0 ,μ1 )∩GMM2d (∞) ∫ ℝd×ℝd ∥y0 − y1 ∥2dγ(y0 , y1 ) Prop. [D.,D.] MW2 2(μ0 , μ1 ) = min w∈Π(π0 ,π1 ) ∑ k,l wkl W2 2 (μk 0 , μl 1 ) . OT problem K0 × K1 See also [Chen, Georgiu, Tannenbaum, 2017], [Chen, Ye, Li, 2016], [Lambert et al. 2023], etc , , on μ0 = K0 ∑ i=1 πi 0 μi 0 𝒩 (mi 0 , Σi 0 ) μ1 = K1 ∑ i=1 πi 1 μi 1 𝒩 (mi 1 , Σi 1 ) ℝd μ0 0 μ1 0 μ0 1 μ1 1 μ2 1
  7. Optimal plan and barycenters At least one solution has less

    than components! K0 + K1 − 1 Optimal plan for = solution of the OT pb. = optimal map between and MW2 γ*(x, y) = ∑ k,l w* k,l pμk 0 (x) δy=Tk,l (x) w* K0 × K1 Tkl μk 0 μl 1 Barycenters for GMM solution with less than components MW2 K0 + K1 + … + KI−1 − I + 1 MW2 W2
  8. Examples of applications Color transfer Texture synthesis [with A. Leclaire,

    2022] Evaluating generative models (FID) [Luzi et al. 2022]
  9. Gromov Wasserstein between incomparable spaces Discrete case cost matrix cost

    matrix μ0 = ∑ i πi 0 δxi Cx μ1 = ∑ j πj 1 δyj Cy GWp p (Cx, Cy, μ0 , μ1 ) := min w∈Π(π0 ,π1 ) ∑ i,j,k,l Cx i,k − Cy j,l p wi,j wk,l Cx i,k Cy j,l i k j l Non convex quadratic assignment problem, NP-hard Approximate algos required. GWp p (μ0 , μ1 ) := inf γ∈Π(μ0 ,μ1 ) ∫ 𝒳 × 𝒴 ∫ 𝒳 × 𝒴 |c 𝒳 (x, x′  ) − c 𝒴 (y, y′  )|p dγ(x, y)dγ(x′  , y′  ) [Mémoli 2011, Sturm 2012, Solomon et al. 2016, Vayer et al. 2020 etc…] If and , , pseudo-metric between metric measure spaces, i.e. i ff isometry s.t. c 𝒳 = dq 0 c 𝒴 = dq 1 q ≥ 1 GWp GWp (μ0 , μ1 ) = 0 ∃ψ : ( 𝒳 , d0 ) → ( 𝒴 , d1 ) μ1 = ψ#μ0 w?
  10. Gromov-W between Gaussians Prop. [Salmona, D., Desolneux, 22] If ,

    , GW admits Gaussian opt. plans of the form , with , and c 𝒳 (x, x′  ) = ⟨x, x′  ⟩d c 𝒴 (y, y′  ) = ⟨y, y′  ⟩d′  γ* = (Idd′  , T)#μ0 T(x) = m1 + P1 AP0 T(x−m0 ) A = ( ˜ Idd′  D1 1 2 D(d′  ) 0 −1 2 ) [d′  ,d] , with ( eigenvalues) on μ0 = 𝒩 (m0 , Σ0 ) Σ0 = P0 D0 PT 0 ↘ ℝd , with ( eigenvalues) on μ1 = 𝒩 (m1 , Σ1 ) Σ1 = P1 D1 PT 1 ↘ ℝd′  d ≥ d′  Classical OT Gromov [included in POT by Rémi Flamary]
  11. GW between Gaussians Prop. [Salmona et al. 22] If and

    , same solution by restricting the optimization to Gaussian couplings of . c 𝒳 (x, x′  ) = ∥x − x′  ∥2 c 𝒴 (y, y′  ) = ∥y − y′  ∥2 (μ0 , μ1 ) Generalizes a result by [Vayer et al. 20] on linear Gromov-Monge maps. Writing we can show that , where GGWp p (μ0 , μ1 ) := inf γ∈Π(μ0 ,μ1 )∩ 𝒩 (ℝd+d′  ) ∫ ∫ |∥x − x′  ∥2 − ∥y − y′  ∥2|2 dγ(x, y)dγ(x′  , y′  ) LGW2 (μ, ν) ≤ GW2 (μ, ν) ≤ GGW2 (μ, ν) GGW2 (μ, ν) = 4(tr(D0 ) − tr(D1 ))2 + 8tr ((D(d′  ) 0 − D1 )2 ) + 8 (tr (D2 0 ) − tr ((D(d′  ) 0 )2 )) LGW2 (μ, ν) = 4(tr(D0 ) − tr(D1 ))2 + 4tr ((D(d′  ) 0 − D1 )2 ) + 4 (tr (D2 0 ) − tr ((D(d′  ) 0 )2 )) +4( tr (D2 1 ) − tr (D2 0 ))2
  12. Between GMMs? Gromovization of MW2 on μ = K ∑

    k=1 πkμk ℝd on ˜ μ = K ∑ k=1 πkδμk 𝒩 (ℝd) [Lambert et al. 2023] MW2 2(μ0 , μ1 ) = min w∈Π(π0 ,π1 ) ∑ k,l wkl W2 2 (μk 0 , μl 1 ) . OT problem between two discrete measures on 𝒩 (ℝd) MGW2 2 (μ0 , μ1 ) := min w∈Π(π0 ,π1 ) ∑ i,j,k,l W2 2 (μi 0 , μk 0 ) − W2 2 (μj 1 , μl 1 ) 2 wi,j wk,l GW2 (W2 2 ,W2 2 , ˜ μ0 , ˜ μ1 )
  13. Between GMMs? Gromovization of MW2 on μ0 = K0 ∑

    i=1 πi 0 𝒩 (mi 0 , Σi 0 ) ℝd on μ1 = K1 ∑ i=1 πi 1 𝒩 (mi 1 , Σi 1 ) ℝd′  Def. MGW2 2 (μ0 , μ1 ) := min w∈Π(π0 ,π1 ) ∑ i,j,k,l W2 2 (μi 0 , μk 0 ) − W2 2 (μj 1 , μl 1 ) 2 wi,j wk,l • Pseudo-metric on the set of GMM of arbitrary fi nite dimensions. • If with isometry for the Euclidean norm, then (but not only). • No straightforward equivalence with a continuous formulation by restricting the couplings to GMM. μ1 = T#μ0 T MGW2 2 (μ0 , μ1 ) = 0
  14. MGW2 Galloping horse experiment, originally conducted in (Rustamov et al.,

    2013), (Solomon et al., 2016), (Vayer et al., 2019). Computational GW : Fit GMMs on data and compute dist. between the two GMMs Computational cost of the method ≈ fi tting the GMMs MGW2 Computational GW: • Entropic GW [Peyré et al., 2016, Solomon et al., 2016] • Sliced GW [Vayer et al., 2019] • Minibatch GW [Fatras et al., 2021] • Low-Rank GW [Scetbon et al., 2022] • Quantized GW [Chowdhury et al., 2022]…
  15. in practice MGW2 No obvious way to derive a transport

    plan. If d ≥ d′  , inf ϕ∈Isom d′  (ℝd) ∑ k,l w* k,l W2 (μk , ϕ#νl ) [Mazur, Ulam 32] i ff with , Stiefel manifold ϕ ∈ Isomd′  (ℝd) ϕ(x) = Px + b P ∈ 𝕍 d′  (ℝd), b ∈ ℝd 𝕍 d′  (ℝd) = {P ∈ ℝd×d′  , PTP = Idd′  } = inf P∈ 𝕍 d′  (ℝd), b∈ℝd ∑ k,l w* k,l W2 (μk , (P. + b)#νl ) Transport Plan with the OT map between and γ*(x, y) = ∑ k,l w* k,l pμk (x)δy=Tk,l(P*T(x−b*)) Tk,l μk (P*. + b*)#νl optimal discrete plan given by . w* GMW2