ɺE[B(x) | z] = 0 Λ ຬͨ͢།Ұͷؔ B ɺͦͷఆٛҬ্ʢdomainʣͰ΄΅࣮֬ʹʢ֬ 1 Ͱʣ0 ʹࣸ૾͞ΕΔؔͷ͜ͱɻ Assumption 5.3 (Instruments). . 1. For all j = 1, . . . , J, E ξjt | zt , x(1) t = 0 almost surely. 2. For all functions B(st , pt ) with finite expectation, if E B(st , pt ) | zt , x(1) t = 0 almost surely then B(st , pt ) = 0 almost surely. ͜͜Ͱɺࣜ (5.12) Λมܗ͢Δ͜ͱͰɺ x(1) jt = σ−1 j (st ; pt ) − ξjt (5.14) ΛಘΔɻ Theorem 5.1. Under Assumptions 5.1-5.3, for all j = 1, . . . , J, (i) σ−1 j is identified with probability 1 for all t, and (ii) the function σj (Xt ) is identified on X.*9 Proof. ࣜ (5.14) ͷ྆ลΛ zt , x(1) t Ͱ͚݅ͨظΛͱΔɻ E ξjt | zt , x(1) t = E σ−1 j (st , pt ) | zt , x(1) t − x(1) jt Assumption 5.3 ΑΓɺ E σ−1 j (st , pt ) | zt , x(1) t − x(1) jt = 0 a.s. ͋Δผͷؔ ˜ σ−1 j ͕͋Δͱͯ͠ɺҎԼΛಉ༷ʹຬͨ͢ͱ͢Δɻ E ˜ σ−1 j (st , pt ) | zt , x(1) t − x(1) jt = 0 a.s. ͜͜ͰɺB(st , pt ) = σ−1 j (st , pt ) − ˜ σ−1 j ͱ͢Δͱɺ E B(st , pt ) | zt , x(1) t = 0 a.s. Assumption 5.3 ΑΓɺ֬ 1 Ͱ ˜ σ−1 j = σ−1 j ͱͳΔɻ͜Εɺσ−1 j ͕ࣝผ͞Εͨ͜ͱΛ͍ࣔͯ͠Δɻ͜ΕΛ ͯ͢ͷ j ʹ܁Γฦ͢͜ͱͰɺࣜ (5.14) ΑΓ ξjt ͕ϢχʔΫʹ֬ 1 Ͱܾఆ͞ΕΔɻ͜ΕʹΑͬͯ (i) ͕ূ໌ Ͱ͖ͨɻબ֬ʢϚʔέοτγΣΞʣ؍͞Εɺधཁؔ σj (Xt ) ͷͯ͢ͷཁૉʢξjt ͕ϢχʔΫʹܾ ·ͬͨ͜ͱͰʣͯ͢Θ͔͍ͬͯΔঢ়ଶͳͷͰɺ(ii) ূ໌͞Εͨɻ 5.4 Discussion 5.4.1 Why 2J instruments? Theorem 5.1 ֎ੜมͰ͋Δ x(1) t ͱআ֎͞Ε͍ͯΔૢ࡞ม zt ʹ͍ͭͯͷૢ࡞มͱͯ͠ͷ݅Λओு ͍ͯ͠Δɻ x(1) jt = σ−1 j (st , pt ) − ξjt (5.15) *9 Xt ͜͜ͰɺXt = (xt, pt, ξt) ͱͯ͠ఆٛ͞ΕΔɻ͜ͷͱ͖ɺࢢ (Jt, Xt) ͷΈ߹ΘͤͰఆٛ͞ΕΔɻ 16