Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥

Volumes by Revolution Rules

Volumes by Revolution Rules

These are the rules to find volume by revolution using integrals.

[email protected]

September 08, 2021
Tweet

Other Decks in Science

Transcript

  1. Volume by Revolution about an Axis Type of Rectangle Method

    General Integral Specific Integral of Volume by Revolution Perpendicular and Attached DISK ! "($%&'())+ Vertical Rectangle ! ,(-(.))/0. 1 2 Horizontal Rectangle ! ,(-(3))/03 0 4 Perpendicular and NOT Attached WASHER ! "[(6(78$ $%&'())+ − (';;8$ $%&'())+] Vertical Rectangle ! ,[(-(.))/ − (=(.))/]0. 1 2 Horizontal Rectangle ! ,[(-(3))/ − (=(3))/]03 0 4 Parallel to Axis CYLINDRICAL SHELL ! 2" ($%&'())(ℎ8'@ℎ7) Vertical Rectangle T – B ! /,(.)(-(.) − =(.))0. 1 2 Horizontal Rectangle R – L ! /,(3)(-(3) − =(3))03 0 4
  2. Volume by Revolution about a line other than the x-axis

    or y-axis **Adjust radius and height if axis is other than x-axis or y-axis WASHER ! ,[(ABCDE E20FBG)/ − (FHHDE E20FBG)/] I = K horizontal Vertical Rectangle ! ,[(-(.) − L)/ − (=(.) − L)/]0. 1 2 M = K vertical Horizontal Rectangle ! ,[(-(3) − L)/ − (=(3) − L)/]03 0 4 CYLINDRICAL SHELL ! /, (E20FBG)(NDF=NC) Vertical Rectangle M = K vertical K ≤ % ! /,(. − L)(-(.) − =(.))0. 1 2 K ≥ Q ! /,(L − .)(-(.) − =(.))0. 1 2 K = 0 and Q ≤ 0 ! /,(−.)(-(.) − =(.))0. 1 2 Horizontal Rectangle I = K horizontal K ≤ S ! /,(3 − L)(-(3) − =(3))03 0 4 K ≥ & ! /,(L − 3)(-(3) − =(3))03 0 4 K = 0 and & ≤ 0 ! /,(−3)(-(3) − =(3))03 0 4
  3. METHOD AXIS OF ROTATION DIRECTION OF THIN RECTANGLE INTEGRATION VARIABLE

    FORMULA FIGURE DISKS (region under a curve) x Perpendicular (⊥) to the x-axis x " #(%(&))()& * + WASHERS (region between two curves) x Perpendicular (⊥) to the x-axis x " #[(%(&))( − (.(&))(])& * + SHELLS (region under a curve) x Parallel (||) to the x-axis y " (#(0)(1(0)))0 ) 2 SHELLS (region between two curves) x Parallel (||) to the x-axis y " (#(0)[1(0) − 3(0)])0 ) 2
  4. METHOD AXIS OF ROTATION DIRECTION OF THIN RECTANGLE INTEGRATION VARIABLE

    FORMULA FIGURE DISKS (region under a curve) y Perpendicular (⊥) to the y-axis y " #(1(0))()0 ) 2 WASHERS (region between two curves) y Perpendicular (⊥) to the y-axis y " #[(1(0))( − (3(0))(])0 ) 2 SHELLS (region under a curve) y Parallel (||) to the y-axis x " (#(&)(%(&)))& * + SHELLS (region between two curves) y Parallel (||) to the y-axis x " (#(&)[%(&) − .(&)])& * +