Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Augmentation Based on Cross-Modal Back Tra...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 04, 2021
Technology
0
1k
Data Augmentation Based on Cross-Modal Back Translation for Multimodal Language Understanding for Fetching Instruction
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 04, 2021
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
FlowAR: Scale-wise Autoregressive Image Generation Meets Flow Matching
keio_smilab
PRO
0
4
[Journal club] VLA-Adapter: An Effective Paradigm for Tiny-Scale Vision-Language-Action Model
keio_smilab
PRO
0
71
[Journal club] Improved Mean Flows: On the Challenges of Fastforward Generative Models
keio_smilab
PRO
0
140
[Journal club] MemER: Scaling Up Memory for Robot Control via Experience Retrieval
keio_smilab
PRO
0
88
[Journal club] Flow Matching for Generative Modeling
keio_smilab
PRO
1
340
Multimodal AI Driving Solutions to Societal Challenges
keio_smilab
PRO
2
210
[Journal club] Re-thinking Temporal Search for Long-Form Video Understanding
keio_smilab
PRO
0
48
[Journal club] Focusing on What Matters: Object-Agent-centric Tokenization for Vision Language Action Models
keio_smilab
PRO
0
22
[Journal club] EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations
keio_smilab
PRO
0
75
Other Decks in Technology
See All in Technology
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
200
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
260
Exadata Fleet Update
oracle4engineer
PRO
0
1.1k
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
220
旅先で iPad + Neovim で iOS 開発・執筆した話
zozotech
PRO
0
100
マネージャー視点で考えるプロダクトエンジニアの評価 / Evaluating Product Engineers from a Manager's Perspective
hiro_torii
0
180
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
130
Cloud Runでコロプラが挑む 生成AI×ゲーム『神魔狩りのツクヨミ』の裏側
colopl
0
140
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
260
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.6k
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
660
AIエージェントに必要なのはデータではなく文脈だった/ai-agent-context-graph-mybest
jonnojun
1
250
Featured
See All Featured
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
440
Being A Developer After 40
akosma
91
590k
Building Adaptive Systems
keathley
44
2.9k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
170
Context Engineering - Making Every Token Count
addyosmani
9
670
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
120
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
A better future with KSS
kneath
240
18k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
Faster Mobile Websites
deanohume
310
31k
The Language of Interfaces
destraynor
162
26k
Transcript
慶應義塾大学 飯田紡,九曜克之,石川慎太朗,杉浦孔明 物体指示理解タスクにおける クロスモーダル言語生成に基づくデータ拡張
背景︓⽣活⽀援ロボットに⾃然⾔語で命令できれば便利 2 ⽣活⽀援ロボット • 障がいを持つ⼈々を物理的に⽀援可能 • 在宅介護者不⾜を克服 スムーズな対話に基づいて ⽣活⽀援タスクを実⾏できれば便利 例)「机の上の飲み物を取ってきて」
対象物体の特定が困難なシーンが存在 3 対象物体の特定が困難な場合がある • 表現が曖昧 • 対象物体候補が複数存在 命令⽂中の参照表現を理解する必要がある “Grab the
red can near to white bottle and put it in the lower left box.” どっちの ⽸︖
問題設定︓物体操作指⽰理解 4 MLU-FI (Multimodal Language Understanding for Fetching Instruction) 命令⽂と画像をもとに,命令⽂中の移動対象物体を特定
⼊⼒︓対象物体候補の領域, 画像中の各物体の領域, 命令⽂ 出⼒︓候補領域中の物体が対象物体である確率の予測値 の物体は命令⽂中の移動対象物体︖ コンテキスト領域 候補領域 move the pink toy animal. 対象物体
関連研究︓物体指⽰理解における既存⼿法はサンプル効率が悪い 6 • [Hatori+ ICRA18] – 物体のピッキングタスクにおける指⽰理解⼿法 • MTCM, MTCM-AB
[Magassouba+ ICRA19, 20] – 命令⽂と全体画像から対象物体を特定 • Target-dependent UNITER[Ishikawa+ RAL & IROS21] – 全体画像の代わりに物体領域を⼊⼒し物体間の関係を学習 1⽂につき 正例: 1物体, 負例: 正例以外の物体全て ⼤量の負例サンプルを使⽤していなかった “Grab the red can near to white bottle and put it in the lower left box.”
提案⼿法︓クロスモーダル逆翻訳データ拡張 8 良い命令⽂のみをデータ拡張に使⽤ 良い命令⽂︓理解モジュールの出⼒! " # $ %!"#$ がしきい値!以上 "
#!"# = % & $%&' ()) | ( ) *()) % & $%&' ()) ≥ ! !: インデックス
⽣成モジュールにより⽣成した命令⽂の例 12 “grab the yellow color object near the white
bottle and put it in the upper right.” “move the green mug cup to the box with the teddy bear.”
提案⼿法における⽣成モジュール 13 Case Relation Transformer[Kambara+ RAL & IROS21] ⼊⼒︓対象領域 コンテキスト領域(対象以外の物体領域)
⽬標領域 出⼒︓対象物体を⽬標領域に移動させる命令⽂ CRB (Case Relation Block)と Transformerにより • 物体間の位置関係をモデル化 • 参照表現を含む⽂を⽣成可能
Target-dependent UNITER[Ishikawa+ RAL & IROS21] ⼊⼒︓候補領域 コンテキスト領域 命令⽂ 出⼒︓候補領域が命令⽂の対象物体である確率の予測値(() *)
提案⼿法における理解モジュール 14 物体間の関係をモデル化 命令⽂中の参照表現理解
実験設定︓データ数ごとのMLU-FIタスクにおける提案⼿法の性能評価 15 PFN-PIC データセット[Hatori+ 18] 画像と画像中の物体に関する命令⽂から構成 4つの箱に物体を無作為に配置 訓練データ数.+,を変化させて データ拡張の効果を確認 .+,
= 4000, 6000, 10000, 63330 (全⽂) が命令⽂中の対象物体かどうかの分類精度により性能評価 “Move the yellow container to the top left box.”
.!"#︓提案⼿法で⽣成した命令⽂数 .!"# = 0 : ベースライン⼿法 (Target-dependent UNITER) ⾊は拡張前の訓練データ数 ⾊ごとに.!"#
= 0のときと⽐較 定量的結果︓⼩規模データでは精度向上し⼤規模データでは同等の精度 16
定量的結果︓⼩規模データでは精度向上し⼤規模データでは同等の精度 17 .!"#︓提案⼿法で⽣成した命令⽂数 .!"# = 0 : ベースライン⼿法 (Target-dependent UNITER)
⾊は拡張前の訓練データ数 ⾊ごとに.!"# = 0のときと⽐較 訓練データ数 : 4000 データ拡張(正例): 2000
定量的結果︓⼩規模データでは精度向上し⼤規模データでは同等の精度 18 .!"#︓提案⼿法で⽣成した命令⽂数 .!"# = 0 : ベースライン⼿法 (Target-dependent UNITER)
⾊は拡張前の訓練データ数 ⾊ごとに.!"# = 0のときと⽐較 訓練データ数 : 4000 データ拡張(正例): 4000
.!"# = 0 : ベースライン⼿法 (Target-dependent UNITER) 訓練データ数.-.が少ない時 データ拡張により精度向上 訓練データ数.-.が多い時
ベースラインとほぼ同等 定量的結果︓⼩規模データでは精度向上し⼤規模データでは同等の精度 19 訓練データ数︓少
.!"# = 0 : ベースライン⼿法 (Target-dependent UNITER) 訓練データ数.-.が少ない時 データ拡張により精度向上 訓練データ数.-.が多い時
ベースラインとほぼ同等 定量的結果︓⼩規模データでは精度向上し⼤規模データでは同等の精度 20 訓練データ数︓多
定性的結果︓成功例 22 “move the black coffee mug to the upper
left box.” ! " # = 0.999 ! " # = 3.15 ×10%& “move the pink toy animal to the lower left hand side of the box.” ほぼ正確に対象領域であると判定 ほぼ正確に対象領域ではないと判定
⼊⼒の領域数./012を変化させて検証 ./012 = 20︓候補領域に近い順20個に制限 訓練データ数.+,が少ない時 ⼊⼒領域数の制限がモデルの性能向上に寄与 Ablation Studies︓⼩規模データでは⼊⼒領域数の制限により精度向上 23 Acc
[%] .'()* .+, 20 全て 4000 92.4 ± 0.7 91.7 ± 0.9 6000 93.4 ± 0.6 93.2 ± 0.5 10000 93.2 ± 0.5 93.7 ± 0.5 63330 96.6 ± 1.1 97.1 ± 0.3
背景︓⽣活⽀援ロボットに⾃然⾔語で命令できれば便利 提案︓クロスモーダル逆翻訳データ拡張によるデータ拡張⼿法 結果︓標準データセットにおいて、ベースライン⼿法を精度で上回る まとめ 25