∈ ℕ = 1 , … , p realization sample space (can NEVER get) = = ∀ = || probability distribution g <- function( = 6) { map(1:∞, ~sample(1: , n=10, replace = TRUE)) } = <- g() X <- density() ~ x → t → ⇔ ~(|) statistical modeling outcome function of face dice
(|) Truth Information Criterion in Bayesian modeling —˜ (| = −• + Generalization error ≈ likelihood | ”(t|i)∗”(i|z) | ”(||z) ”(t|i) prior distribution posterior distribution data
predictive distribution () (|) Truth Information Criterion in Bayesian modeling evidence = − log ≔ —˜ (| = −• + Generalization error ≈ likelihood | ”(t|i)∗”(i|z) | ”(||z) ”(t|i) prior distribution posterior distribution data self-information
∈ ℕ = 1 , … , realization sample space (can NEVER get) = = ∀ = || probability distribution = <- g() X <- density() ~ x → t → ⇔ ~(|) statistical modeling outcome function of face dice g <- function( = 6) { map(1:∞, ~sample(1: , n=10, replace = TRUE)) }
B is better H0 : We have to choice better 1 of 2. x y There is a difference between x and y A>B A is better θ H1 : = t − § t - ← | ← | ”(|│z) ”(t│i) § - ← | ← | ”(°│±) ”(§│²)
B is better H0 : We have to choice better 1 of 2. x y There is a difference between x and y A>B A is better θ H1 : ³ ← [t , § ] t - ← | ← | ”(|│z) ”(t│i) § - ← | ← | ”(°│±) ”(§│²)
B is better H0 : We have to choice better 1 of 2. x y There is a difference between x and y A>B A is better θ H1 : ³ ← [t , § ] t - ← | ← | ” ” § - ← | ← | ” ”
∈ ℕ = 1 , … , p realization sample space (can NEVER get) = = ∀ = || probability distribution = <- g() X <- density() ~ x → t → ⇔ ~(|) statistical modeling outcome function with parameter g <- function( = 6) { map(1:∞, ~sample(1: , n=10, replace = TRUE)) }