Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SappoRo.R_roundrobin
Search
kilometer
March 18, 2023
Programming
0
170
SappoRo.R_roundrobin
第10回Sapporo.Rで喋った際のスライドです。
kilometer
March 18, 2023
Tweet
Share
More Decks by kilometer
See All by kilometer
TokyoR#111_ANOVA
kilometer
2
930
TokyoR109.pdf
kilometer
1
510
TokyoR#108_NestedDataHandling
kilometer
0
880
TokyoR#107_R_GeoData
kilometer
0
470
TokyoR#104_DataProcessing
kilometer
1
730
TokyoR#103_DataProcessing
kilometer
0
940
TokyoR#102_RMarkdown
kilometer
1
690
TokyoR#101_RegressionAnalysis
kilometer
0
520
TokyoR#99_Divergence
kilometer
1
440
Other Decks in Programming
See All in Programming
開発生産性が組織文化になるまでの軌跡
tonegawa07
0
180
Phronetic Team with AI - Agile Japan 2025 closing
hiranabe
2
650
CloudNative Days Winter 2025: 一週間で作る低レイヤコンテナランタイム
ternbusty
7
1.6k
Duke on CRaC with Jakarta EE
ivargrimstad
0
130
AI 時代だからこそ抑えたい「価値のある」PHP ユニットテストを書く技術 #phpconfuk / phpcon-fukuoka-2025
shogogg
1
570
Java_プロセスのメモリ監視の落とし穴_NMT_で見抜けない_glibc_キャッシュ問題_.pdf
ntt_dsol_java
0
220
Herb to ReActionView: A New Foundation for the View Layer @ San Francisco Ruby Conference 2025
marcoroth
0
140
自動テストのアーキテクチャとその理由ー大規模ゲーム開発の場合ー
segadevtech
2
1k
「10分以内に機能を消せる状態」 の実現のためにやっていること
togishima
1
520
Agentに至る道 〜なぜLLMは自動でコードを書けるようになったのか〜
mackee
5
1.8k
無秩序からの脱却 / Emergence from chaos
nrslib
1
5.4k
Claude Code on the Web を超える!? Codex Cloud の実践テク5選
sunagaku
0
580
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
For a Future-Friendly Web
brad_frost
180
10k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
Building Applications with DynamoDB
mza
96
6.8k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Transcript
SappoRo.R #10 @kilometer00 2023.03.18 らくらく総当たり組み合わせ
Who!? Who?
Who!? 名前: 三村 @kilometer 職業: ポスドク (こうがくはくし) 専⾨: ⾏動神経科学(霊⻑類) 脳イメージング
医療システム⼯学 R歴: ~ 10年ぐらい 流⾏: アンキロサウルス
宣伝!!(書籍の翻訳に参加しました。) 絶賛販売中!
宣伝2!! R⾔語の地域コミュニティ@東京です。 定期的にR⾔語に関する勉強会を開催しています。 次回は4⽉22⽇!! 初⼼者特集回です!!
総当たり組み合わせ Round-robin そう あ あ く
dat_nest <- palmerpenguins::penguins %>% dplyr::group_nest(species) データを畳み込む > dat_nest # A
tibble: 3 × 2 species data <fct> <list<tibble[,7]>> 1 Adelie [152 × 7] 2 Chinstrap [68 × 7] 3 Gentoo [124 × 7] (息を吐くように)
# A tibble: 9 × 4 species.x species.y data.x data.y
<fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Adelie [152 × 7] [152 × 7] 2 Chinstrap Adelie [68 × 7] [152 × 7] 3 Gentoo Adelie [124 × 7] [152 × 7] 4 Adelie Chinstrap [152 × 7] [68 × 7] 5 Chinstrap Chinstrap [68 × 7] [68 × 7] 6 Gentoo Chinstrap [124 × 7] [68 × 7] 7 Adelie Gentoo [152 × 7] [124 × 7] 8 Chinstrap Gentoo [68 × 7] [124 × 7] 9 Gentoo Gentoo [124 × 7] [124 × 7] 総当たり組み合わせ # A tibble: 3 × 4 species.x species.y data.x data.y <fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Chinstrap [152 × 7] [68 × 7] 2 Adelie Gentoo [152 × 7] [124 × 7] 3 Chinstrap Gentoo [68 × 7] [124 × 7] 組み合わせ(combination) (round-robin)
base::expand.grid()関数 > dat_nest # A tibble: 3 × 2 species
data <fct> <list<tibble[,7]>> 1 Adelie [152 × 7] 2 Chinstrap [68 × 7] 3 Gentoo [124 × 7] dat_nest$species
grid <- dat_nest$species %>% expand.grid(., .) base::expand.grid()関数 > grid Var1
Var2 1 Adelie Adelie 2 Chinstrap Adelie 3 Gentoo Adelie 4 Adelie Chinstrap 5 Chinstrap Chinstrap 6 Gentoo Chinstrap 7 Adelie Gentoo 8 Chinstrap Gentoo 9 Gentoo Gentoo
dplyr::left_join()関数 > grid Var1 Var2 1 Adelie Adelie 2 Chinstrap
Adelie 3 Gentoo Adelie 4 Adelie Chinstrap 5 Chinstrap Chinstrap 6 Gentoo Chinstrap 7 Adelie Gentoo 8 Chinstrap Gentoo 9 Gentoo Gentoo > dat_nest # A tibble: 3 × 2 species data <fct> <list<tibble[,7]>> 1 Adelie [152 × 7] 2 Chinstrap [68 × 7] 3 Gentoo [124 × 7] ①対応づけて結合 ②対応づけて結合
dplyr::left_join()関数 dat_rr <- grid %>% tibble::as_tibble() %>% dplyr::left_join( dat_nest %>%
dplyr::rename(Var1 = "species"), by = "Var1" ) %>% dplyr::left_join( dat_nest %>% dplyr::rename(Var2 = "species"), by = "Var2" )
dplyr::left_join()関数 dat_rr <- grid %>% tibble::as_tibble() %>% dplyr::left_join( dat_nest %>%
dplyr::rename(Var1 = "species"), by = "Var1" ) %>% dplyr::left_join( dat_nest %>% dplyr::rename(Var2 = "species"), by = "Var2" ) ① ②
> dat_rr # A tibble: 9 × 4 Var1 Var2
data.x data.y <fct> <fct> <list<tibble[,7]>> <list<tibble[,7]> 1 Adelie Adelie [152 × 7] [152 × 7] 2 Chinstrap Adelie [68 × 7] [152 × 7] 3 Gentoo Adelie [124 × 7] [152 × 7] 4 Adelie Chinstrap [152 × 7] [68 × 7] 5 Chinstrap Chinstrap [68 × 7] [68 × 7] 6 Gentoo Chinstrap [124 × 7] [68 × 7] 7 Adelie Gentoo [152 × 7] [124 × 7] 8 Chinstrap Gentoo [68 × 7] [124 × 7] 9 Gentoo Gentoo [124 × 7] [124 × 7]
dplyr::rename()関数 dat_rr_rename <- dat_rr %>% rename(species.x = Var1) %>% rename(species.y
= Var2) > dat_rr_rename # A tibble: 9 × 4 species.x species.y data.x data.y <fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Adelie [152 × 7] [152 × 7] 2 Chinstrap Adelie [68 × 7] [152 × 7] 3 Gentoo Adelie [124 × 7] [152 × 7] 4 Adelie Chinstrap [152 × 7] [68 × 7] 5 Chinstrap Chinstrap [68 × 7] [68 × 7] 6 Gentoo Chinstrap [124 × 7] [68 × 7] 7 Adelie Gentoo [152 × 7] [124 × 7] 8 Chinstrap Gentoo [68 × 7] [124 × 7] 9 Gentoo Gentoo [124 × 7] [124 × 7]
dplyr::rename()関数 dat_rr_rename <- dat_rr %>% rename(species.x = Var1) %>% rename(species.y
= Var2) key <- "species" x <- stringr::str_c(key, ".x") y <- stringr::str_c(key, ".y") dat_rr_rename <- dat_rr %>% rename(!!x := Var1) %>% rename(!!y := Var2) 別解 {rlang}パッケージの演算⼦
# A tibble: 9 × 4 species.x species.y data.x data.y
<fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Adelie [152 × 7] [152 × 7] 2 Chinstrap Adelie [68 × 7] [152 × 7] 3 Gentoo Adelie [124 × 7] [152 × 7] 4 Adelie Chinstrap [152 × 7] [68 × 7] 5 Chinstrap Chinstrap [68 × 7] [68 × 7] 6 Gentoo Chinstrap [124 × 7] [68 × 7] 7 Adelie Gentoo [152 × 7] [124 × 7] 8 Chinstrap Gentoo [68 × 7] [124 × 7] 9 Gentoo Gentoo [124 × 7] [124 × 7] 総当たり組み合わせ # A tibble: 3 × 4 species.x species.y data.x data.y <fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Chinstrap [152 × 7] [68 × 7] 2 Adelie Gentoo [152 × 7] [124 × 7] 3 Chinstrap Gentoo [68 × 7] [124 × 7] 組み合わせ(combination) (round-robin)
grid <- dat_nest$species %>% expand.grid(., .) %>% subset(unclass(Var1) < unclass(Var2))
%>% tibble::as_tibble() base::subset()関数 > grid # A tibble: 3 × 2 Var1 Var2 <fct> <fct> 1 Adelie Chinstrap 2 Adelie Gentoo 3 Chinstrap Gentoo
という変換を パッケージにしました。 devtools::install_github( "kilometer0101/roundrobin" ) (4回⼿打ちしたら⾯倒臭くなったので)
roundrobin::roundrobin()関数 # A tibble: 9 × 4 species.x species.y data.x
data.y <fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Adelie [152 × 7] [152 × 7] 2 Chinstrap Adelie [68 × 7] [152 × 7] 3 Gentoo Adelie [124 × 7] [152 × 7] 4 Adelie Chinstrap [152 × 7] [68 × 7] 5 Chinstrap Chinstrap [68 × 7] [68 × 7] 6 Gentoo Chinstrap [124 × 7] [68 × 7] 7 Adelie Gentoo [152 × 7] [124 × 7] 8 Chinstrap Gentoo [68 × 7] [124 × 7] 9 Gentoo Gentoo [124 × 7] [124 × 7] library(roundrobin) palmerpenguins::penguins %>% roundrobin(key = "species")
library(roundrobin) palmerpenguins::penguins %>% roundrobin(key = "species", combination = TRUE) roundrobin::roundrobin()関数
# A tibble: 3 × 4 species.x species.y data.x data.y <fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Chinstrap [152 × 7] [68 × 7] 2 Adelie Gentoo [152 × 7] [124 × 7] 3 Chinstrap Gentoo [68 × 7] [124 × 7]
使ってみますか。
library(tidyverse) library(palmerpenguins) library(roundrobin) dat <- palmerpenguins::penguins %>% na.omit() %>% #
NA除去 mutate_at( vars(c(contains("mm"), contains("g"))), ~ (. - mean(.)) / sd(.) # 標準化 ) %>% select(species, contains("mm"), contains("g")) 前処理
> dat # A tibble: 333 × 5 species bill_length_mm
bill_depth_mm flipper_length_mm body_mass_g <fct> <dbl> <dbl> <dbl> <dbl> 1 Adelie -0.895 0.780 -1.42 -0.568 2 Adelie -0.822 0.119 -1.07 -0.506 3 Adelie -0.675 0.424 -0.426 -1.19 4 Adelie -1.33 1.08 -0.568 -0.940 5 Adelie -0.858 1.74 -0.782 -0.692 6 Adelie -0.931 0.323 -1.42 -0.723 7 Adelie -0.876 1.24 -0.426 0.581 8 Adelie -0.529 0.221 -1.35 -1.25 9 Adelie -0.986 2.05 -0.711 -0.506 10 Adelie -1.72 2.00 -0.212 0.240 # … with 323 more rows # i Use `print(n = ...)` to see more rows 前処理
dat_long <- dat %>% rowid_to_column("id") %>% pivot_longer( cols = !species,
names_to = "parameter", values_to = "value" ) %>% group_by(parameter) %>% ungroup() .y <- dat_long %>% ungroup() %>% group_by(species) %>% summarise( mean_id = mean(id), min_id = min(id) ) dat_long %>% ggplot() + aes(parameter, id) + geom_tile(aes(fill = value)) + geom_hline( yintercept = max(dat_long$id) ) + geom_hline(data = .y, aes(yintercept = min_id)) + scale_y_continuous( breaks = .y$mean_id, labels = .y$species, expand = c(0, 0)) + theme( axis.title = element_blank(), axis.text.x = element_text( angle = 30, hjust = 1 ) ) 可視化コード (ちょちょいのちょい)
可視化
> dat_rr # A tibble: 9 × 4 Var1 Var2
data.x data.y <fct> <fct> <list<tibble[,4]>> <list<tibble[,4]>> 1 Adelie Adelie [146 × 4] [146 × 4] 2 Chinstrap Adelie [68 × 4] [146 × 4] 3 Gentoo Adelie [119 × 4] [146 × 4] 4 Adelie Chinstrap [146 × 4] [68 × 4] 5 Chinstrap Chinstrap [68 × 4] [68 × 4] 6 Gentoo Chinstrap [119 × 4] [68 × 4] 7 Adelie Gentoo [146 × 4] [119 × 4] 8 Chinstrap Gentoo [68 × 4] [119 × 4] 9 Gentoo Gentoo [119 × 4] [119 × 4] 総当たり組み合わせ dat_rr <- dat %>% roundrobin(key = "species", rename = FALSE)
例えばマハラノビス距離 dat_rr_mahaD <- dat_rr %>% mutate(mahaD2 = map2( data.x, data.y,
# yに対するxの距離 ~ mahalanobis(.x, colMeans(.y), cov(.y)) )) %>% mutate(Var2 = str_c("vs. ", Var2)) > dat_rr_mahaD # A tibble: 9 × 5 Var1 Var2 data.x data.y mahaD2 <fct> <chr> <list<tibble[,4]>> <list<tibble[,4]>> <list> 1 Adelie vs. Adelie [146 × 4] [146 × 4] <dbl [146]> 2 Chinstrap vs. Adelie [68 × 4] [146 × 4] <dbl [68]> 3 Gentoo vs. Adelie [119 × 4] [146 × 4] <dbl [119]> 4 Adelie vs. Chinstrap [146 × 4] [68 × 4] <dbl [146]> 5 Chinstrap vs. Chinstrap [68 × 4] [68 × 4] <dbl [68]> 6 Gentoo vs. Chinstrap [119 × 4] [68 × 4] <dbl [119]> 7 Adelie vs. Gentoo [146 × 4] [119 × 4] <dbl [146]> 8 Chinstrap vs. Gentoo [68 × 4] [119 × 4] <dbl [68]> 9 Gentoo vs. Gentoo [119 × 4] [119 × 4] <dbl [119]>
例えばマハラノビス距離 dat_rr_mahaD <- dat_rr %>% mutate(mahaD2 = map2( data.x, data.y,
# yに対するxの距離 ~ mahalanobis(.x, colMeans(.y), cov(.y)) )) %>% mutate(Var2 = str_c("vs. ", Var2)) dat_mahaD <- dat_rr_mahaD %>% select(!data.y) %>% unnest(everything())
> dat_mahaD # A tibble: 999 × 7 Var1 Var2
bill_length_mm bill_…¹ flipp…² body_…³ mahaD2 <fct> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 1 Adelie vs. Adelie -0.895 0.780 -1.42 -0.568 2.84 2 Adelie vs. Adelie -0.822 0.119 -1.07 -0.506 1.95 3 Adelie vs. Adelie -0.675 0.424 -0.426 -1.19 4.26 4 Adelie vs. Adelie -1.33 1.08 -0.568 -0.940 3.32 5 Adelie vs. Adelie -0.858 1.74 -0.782 -0.692 5.57 6 Adelie vs. Adelie -0.931 0.323 -1.42 -0.723 2.47 7 Adelie vs. Adelie -0.876 1.24 -0.426 0.581 5.94 8 Adelie vs. Adelie -0.529 0.221 -1.35 -1.25 5.27 9 Adelie vs. Adelie -0.986 2.05 -0.711 -0.506 7.75 10 Adelie vs. Adelie -1.72 2.00 -0.212 0.240 15.2 # … with 989 more rows, and abbreviated variable names # ¹bill_depth_mm, ²flipper_length_mm, ³body_mass_g # ℹ Use `print(n = ...)` to see more rows 例えばマハラノビス距離
例えばマハラノビス距離 ggplot(dat_mahaD) + aes(mahaD2, color = Var1, fill = Var1)
+ geom_density(alpha = 0.5) + facet_wrap(~Var2)
総当たり組み合わせ Round-robin そう あ あ く devtools::install_github( "kilometer0101/roundrobin" )
Enjoy!