Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Concept of BeginneR Session

kilometer
October 08, 2018
560

Concept of BeginneR Session

Tukuba.R #1 にてお話しした内容です。

kilometer

October 08, 2018
Tweet

Transcript

  1. Configuration of 1. Beginner Session 2. Advanced Session 3. LT

    Session Basic knowledge, Global usage, Tutorial Application case, Developed own pkgs 5min short talk (lightning talk)
  2. BeginneR Advanced Hoxo_m If I have seen further it is

    by standing on the sholders of Giants. -- Sir Isaac Newton, 1676
  3. BeginneR Advanced * Landscape form the sholders of Giants *

    Philosophy of the climbing wall structure * Climbing techniques
  4. Beginner Session Basic knowledge, Global usage, Tutorial * Concept of

    the wall structure * Climbing techniques 3 1
  5. ... Perm Crimp Jug * Techniques Diagonal move Why? Why?

    Why? Why? Why? Why? Why? Why? Why? How How How How * Concept Why? Why? Why? Why? Why? Why? Why?
  6. ブール演算⼦ Boolean Algebra A == B A != B A

    | B A & B A %in% B # equal to # not equal to # or # and # is A in B?
  7. George Boole 1815 - 1864 A Class-Room Introduction to Logic

    https://niyamaklogic.wordpress.com/c ategory/laws-of-thoughts/ Mathematician Philosopher &
  8. 1JQFBMHFCSB X %>% f X %>% f(y) X %>% f

    %>% g X %>% f(y, .) f(X) f(X, y) g(f(X)) f(y, X) %>% {magrittr} 「dplyr再⼊⾨(基本編)」yutanihilation https://speakerdeck.com/yutannihilation/dplyrzai-ru-men-ji-ben-bian
  9. {magrittr} # こう書きますか? 536&*/ dat1 <- f1(dat0, var1-1, var1-2) dat2

    <- f2(dat1, var2) dat3 <- f3(dat2, var3) dat4 <- f4(var4-1, dat3, var4-2) dat5 <- f5(dat4, var5) dat6 <- f6(dat5, var6) 536&065 5IJOLJOH 3FBEJOH 1JQFBMHFCSB %>%
  10. {magrittr} # こうやって書く事もできます。 dat <- dat0 %>% f1(var1-1, var1-2) %>%

    f2(var2) %>% f3(var3) %>% f4(var4-1, ., var4-2) %>% f5(var5) %>% f6(var6) */ 065 1JQFBMHFCSB %>%
  11. {magrittr} dat <- iris %>% .[, 1:3] %>% prcomp iris

    %>% .[, 1:3] %>% prcomp -> dat “Passive” writing “Active” writing BはAがFされたもの AをFするとBになる 1JQFBMHFCSB %>%
  12. likelihood prior posterior ≅ ) ∗ () likelihood | <(=|>)∗<(>|?)

    | <(@|?) <(=|>) prior distribution posterior distribution predictive distribution data () (|) Truth Information Criterion in Bayesian modeling ebidence CD (| = −H(=) + CD (| = − H(?) Free energy Generalization error ≈ ≈ = − log ≔ self-information
  13. Beginner Session Basic knowledge, Global usage, Tutorial * Concept of

    the wall structure * Climbing techniques 3 1
  14. BeginneR Advanced Hoxo_m If I have seen further it is

    by standing on the sholders of Giants. -- Sir Isaac Newton, 1676