Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
日本最大級のファッションDBを支える裏側/how to manage the complex ...
Search
Masayuki Imamura
February 28, 2016
Programming
4
880
日本最大級のファッションDBを支える裏側/how to manage the complex web service
dots. CONFERENCE SPRING 2016の「複雑高機能なwebサービスを支える技術」での発表内容です。
Masayuki Imamura
February 28, 2016
Tweet
Share
More Decks by Masayuki Imamura
See All by Masayuki Imamura
バイセルにおけるAI活用の取り組みについて紹介します/Generative AI at BuySell Technologies
kyuns
2
1k
経営視点から捉えた開発生産性 / Development productivity from a management perspective
kyuns
12
10k
Qiita:Teamをハックして成果をあげるための情報共有方法/Qiita:Team
kyuns
6
3.6k
3年連続ベストアプリ受賞のプロダクトを支える裏側/The way to Achieve The Best App 3 years in a row
kyuns
1
1.7k
機械学習とデータ分析を支えるマルチクラウドなアーキテクチャの紹介/Multi Cloud Architecture Supporting Machine Learning and Data Analysis
kyuns
4
9.9k
iQONを支えるクローラー/iQON Crawler
kyuns
12
4.2k
iQONを支えるデータ分析基盤/iqon-bigquery
kyuns
3
10k
iQON Tools
kyuns
1
3.9k
プッシュ通知大戦争/effective push notification by iQON
kyuns
28
8.4k
Other Decks in Programming
See All in Programming
Goで実践するドメイン駆動開発 AIと歩み始めた新規プロダクト開発の現在地
imkaoru
4
670
Cloudflare AgentsとAI SDKでAIエージェントを作ってみた
briete
0
110
フロントエンド開発に役立つクライアントプログラム共通のノウハウ / Universal client-side programming best practices for frontend development
nrslib
7
3.9k
CSC509 Lecture 06
javiergs
PRO
0
240
私達はmodernize packageに夢を見るか feat. go/analysis, go/ast / Go Conference 2025
kaorumuta
2
490
Advance Your Career with Open Source
ivargrimstad
0
350
Breaking Up with Big ViewModels — Without Breaking Your Architecture (droidcon Berlin 2025)
steliosf
PRO
1
330
CSC305 Lecture 04
javiergs
PRO
0
250
Web Components で実現する Hotwire とフロントエンドフレームワークの橋渡し / Bridging with Web Components
da1chi
3
1.9k
開発生産性を上げるための生成AI活用術
starfish719
1
180
ИИ-Агенты в каждый дом – Алексей Порядин, PythoNN
sobolevn
0
150
Introducing ReActionView: A new ActionView-Compatible ERB Engine @ Kaigi on Rails 2025, Tokyo, Japan
marcoroth
3
920
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
42
2.8k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
How to Ace a Technical Interview
jacobian
280
24k
Building Applications with DynamoDB
mza
96
6.6k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Agile that works and the tools we love
rasmusluckow
331
21k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
Being A Developer After 40
akosma
91
590k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
HOW TO MANAGE THE COMPLEX WEBSERVICE ຊ࠷େڃͷϑΝογϣϯ%#Λࢧ͑Δཪଆ VASILY,Inc. @kyuns dots.
CONFERENCE SPRING 2016
ࠓଜխ @kyuns / Ωϡϯ VASILY,Inc औకCTO / Co-Founder 2006Yahoo!JAPANʹೖࣾɺYahoo!FASHION XBRANDͳͲͷαʔϏεͷ্ཱͪ͛ͷ։ൃΛ୲ɻ
ϦίϝϯσʔγϣϯͷಛڐͳͲΛऔಘޙɺ 2009ʹಠཱɺVASILYΛۀɻऔకCTOʹब
ઃཱ: 200811݄ ॴࡏ:౦ژौ୩۠ܙൺण1-18-14 ܙൺणϑΝʔετεΫΤΞ 9F ैۀһ: 50ਓ (ΤϯδχΞ20໊/ΠϯλʔϯؚΉ) ࢿຊۚ: 1ԯ
දऔక: ۚࢁ ༟थ औక:ࠓଜ խ / ઍ༿ େี גओ: ҏ౻ςΫϊϩδʔϕϯνϟʔζ / KDDIגࣜձࣾ άϩʔϏεɾΩϟϐλϧɾύʔτφʔζ / GMOϕϯνϟʔύʔτφʔζ /גࣜձࣾߨஊࣾ
.BU[͞Μٕज़ސ
άϩʔεϋοΫຊͰ·ͨ͠
ຊதͷϑΝογϣϯ ECαΠτͷσʔλΛܝࡌ ຊ࠷େڃͷঁͷࢠͷͨΊͷ ϑΝογϣϯΞϓϦʮΞΠίϯʯ ձһ 250ສਓ Google Play ϕετɾΦϒ 2015
ࣄۀΛࢧ͑Δຊப J20/ 1$41J04"OESPJE &$αΠτΫϩʔϥʔ "1* ࠂ৴ࣄۀ
"HFOEB ຊ࠷େڃͷϑΝογϣϯ%#Λࢧ͑Δཪଆ ෳࡶͳ8FCαʔϏεΛ։ൃ͢Δ࣌ʹ ཱͭઃܭख๏ΛͬͯΒ͏
w "1*Λࢧ͑Δٕज़ w ΫϩʔϥʔΛࢧ͑Δٕज़ w σʔλੳΛࢧ͑Δٕज़ ͭͷࣄྫ͔ΒֶͿϙΠϯτ
ͭͷࣄྫ͔ΒֶͿϙΠϯτ w "1*Λࢧ͑Δٕज़ w ΫϩʔϥʔΛࢧ͑Δٕज़ w σʔλੳΛࢧ͑Δٕज़
"1*Λࢧ͑Δٕज़
J20/ͷ"1* ΞΠςϜ ίʔσΟωʔτ γϣοϓ Ϣʔβʔ ϒϥϯυ ͋ΒΏΔϑΝογϣϯใΛ֨ೲͨ͠"1* 8FCJ04"OESPJE"1*ఏڙઌ͔Βར༻͞Ε͍ͯΔ શͯͷϩδοΫ͕٧·ͬͨ.POPMJUIJDͳ"1* Ҏ্ͷ"1*ΤϯυϙΠϯτ͕͋ΔͨΊɺ
ී௨ʹ࡞ΔͱΧΦεʹͳΔ
ڊେ8FCΞϓϦέʔγϣϯΛࢧ͑ΔϙΠϯτ w ΞϓϦέʔγϣϯͷઃܭ w .JDSP4FSWJDFT w %PDLFS
ΞϓϦέʔγϣϯͷઃܭ
3BJMTΞϓϦέʔγϣϯઃܭͷίπ w 3BJMTΛӡ༻͍ͯ͠Δͱ.PEFM͕ංେԽ͕ͪ͠ʹͳΔ w ղܾࡦͱͯ͠$POUSPMMFSͱ.PEFMͷؒʹ4FSWJDFΛಋೖ ˠ%PNBJO%SJWFO%FTJHO 3BJMT w .PEFMͷத͔Βผͷ.PEFMΛݺͼग़͍ͯ͠ΔͷͳͲΛ
ආ͚Δ IUUQRJJUBDPNKPPPFFJUFNTGEDEEGCGFC
4FSWJDFͷҐஔ͚ͮ
MicroServices
MicroServices w ڊେͳ"1*͔ΒαʔϏεͱͯ͠Γग़ͤΔ෦Λ3&45 "1*ͱͯ͠Γ͢ w ͦΕͧΕͷػೳʹ͋ͬͨ04ݴޠΛબͿ͜ͱ͕Ͱ͖Δ w શͯΛ.JDSP4FSWJDFԽ͢Ε͍͍ͱ͍͏Θ͚Ͱͳ͍ ύϑΥʔϚϯεͱͷτϨʔυΦϑ దͳίϯϙʔωϯτͷΈΓ͖͢
ྫ: ը૾͔ΒͷΞΠςϜఆAPI w Ϋϩʔϥʔ͔Βར༻͍ͯ͠Δ(PPHMFͷ$MPVE 7JTJPO"1*ϥΠΫͳࣗ࡞"1* w ϕʔεͱͯ͠1ZUIPOΛ༻͍͍ͯΔͷͰ6CVOUV 1ZUIPO 'MBTLͰ3&45"1*ͱͯ͠ߏங
%PDLFSͷ׆༻
ࠂ৴αʔόʔͰͷ%PDLFSࣄྫ EC2 SVCZ OHJOY NBDLFSFM qVFOUE AWS ElasticBeanstalk + Docker
Auto Scaling ΠϯελϯεͷதͰ֤%PDLFSίϯςφΛMJOL
&MBTUJD#FBOTUBML %PDLFS ϦΫΤετ࣌ؒଳʹԠͯ͡ΠϯελϯεΛ૿ݮͰ͖Δ Φʔτεέʔϧ ֤ϛυϧΤΞ͕%PDLFSίϯςφʹͳ͍ͬͯΔͨΊ ϛυϧΣΞͷݸผΞοϓσʔτָ͕ SVCZ OHJOY NBDLFSFM
qVFOUE SVCZ OHJOY NBDLFSFM qVFOUE SVCZͷίϯςφͷΈߋ৽ %PDLFSͷಛੑΛ׆͔͢
w "1*Λࢧ͑Δٕज़ w ΫϩʔϥʔΛࢧ͑Δٕज़ w σʔλੳΛࢧ͑Δٕज़ ͭͷࣄྫ͔ΒֶͿϙΠϯτ
ΫϩʔϥʔΛࢧ͑Δٕज़
Ϋϩʔϥʔ αΠτҎ্ɺສҎ্ͷΞΠςϜΛ ຖΫϩʔϧ Ձ֨ɺࡏݿใͳͲΛऔಘ
ΫϩʔϥʔΛࢧ͑ΔϙΠϯτ w పఈతͳࣗಈԽ ΧςΰϦఆɺϒϥϯυఆɺը૾ఆɺը૾Γൈ͖ɺλ ά͚ɺஈมߋݕɺ͋ΒΏΔ෦Λࣗಈతʹఆॲཧ͢ ΔΈɺࣗಈԽΛపఈ w పఈతͳޮԽ ΤϯδχΞͰͳͯ͘ΫϩʔϥʔΛ࡞ΕΔ(6*πʔϧΛ
ࣗಈԽେྔͷϑΝογϣϯΞΠςϜྨ w ΧςΰϦͷఆλά͚ΛࣗಈԽ ສޠͷϑΝογϣϯࣙॻ ػցֶश w ࠷ۙͰ$IBJOFSΛ༻͍ͯਂֶश ʢσΟʔϓϥʔχϯάʣΛߦ͍ը૾͔ ΒΧςΰϦఆߦ͍ͬͯΔ IUUQXXXTMJEFTIBSFOFU5BLFIJSP4IJP[BLJJRPO
ϫϯϐʔε Ֆฑ τοϓε
σΟʔϓϥʔχϯάͰΧςΰϦྨ IUUQUFDIWBTJMZKQFOUSZGBTIJPOEFFQMFBSOJOH
Ϋϩʔϥʔ࡞πʔϧ w Ϋϩʔϥʔ࡞ΛޮԽ͢Δࣾπʔϧ w ߲நग़ͷͨΊͷ91"5) จࣈྻૢ࡞ ਖ਼نදݱΛೖྗՄೳ w ೖྗσʔλͷϓϨϏϡʔػೳࡌ w
͍͠αΠτSVCZͷίʔυϚʔδՄೳ
w "1*Λࢧ͑Δٕज़ w ΫϩʔϥʔΛࢧ͑Δٕज़ w σʔλੳΛࢧ͑Δٕज़ ͭͷࣄྫ͔ΒֶͿϙΠϯτ
σʔλੳΛࢧ͑Δٕज़
ϋΠϒϦουΫϥυ ϝΠϯͷαʔϏεఏڙΠϯϑϥ σʔλੳج൫ͱͯ͠ͷΠϯϑϥ
BigQuery RDS Log Aggregater GoogleDataProc MongoDB GoogleDrive (SpreadSheet) API Server
Web Server fluentd fluentd fluentd J20/ͷσʔλղੳج൫ iOS/Android Puree 1VSFFΛར༻ͯ͠ड͚औͬͨϩάશͯqVFOEܦ༝Ͱ#JH2VFSZ 1VSFFIUUQUFDIMJGFDPPLQBEDPNFOUSZ
ϩάσʔλετϨʔδ w શͯͷσʔλϩά#JH2VFSZʹอଘ IUUQUFDIWBTJMZKQFOUSZCJHRVFSZ@EBUB@QMBUGPSN
BigQuery (PPHMF͕ఏڙ͢ΔϑϧϚωʔδυσʔλੳαʔϏε ѹతʹ؆୯͍͍҆ w ΞϓϦ1$εϚϗͷߦಈϩά w Ϛελʔ%#σʔλ GSPN3%4 w
Ϋϩʔϥʔͷશϩά w ϦίϝϯυΤϯδϯͷܭࢉ݁Ռ ͋ΒΏΔϩάΛͱʹ͔͘อଘ
ؾʹͳΔྉۚ w ετϨʔδ(# w ετϦʔϛϯάΠϯαʔτ. w ΫΤϦྔ5# J20/ͷ݄ؒར༻ঢ়گ w
ੳΫΤϦྔ5# w ༻ετϨʔδྔ5# ࣌
ෳࡶͳσʔλੳ5BCMFBVͰ #JH2VFSZ3%4ϦΞϧλΠϜʹѻ͑Δ ࡉ͔͍σʔλੳ5BCMFBV%FTLUPQ ࣾͰͷσʔλڞ༗ʹ5BCMFBV4FSWFS
ෳࡶͳσʔλܭࢉ%BUBQSPDͰ (PPHMF͕ఏڙ͢Δ)BEPPQ4QBSLͷϚωʔδυαʔϏε J20/Ͱ4QBSL :"3/ Λ༻͍ͨϦίϝϯσʔγϣϯͷ ܭࢉʹར༻ ࣗલͰ)BEPPQΫϥελΛ·ͳ͍͍ͯ͘ͷͰศར σʔλιʔεͱͯ͠#JH2VFSZΛར༻Մೳ
ࣗಈԽෳࡶͳόονॲཧ"JS'MPXͰ "JSCOC͕ࣾ։ൃͨ͠όονॲཧ࣮ߦϑϨʔϜϫʔΫ ෳͷδϣϒͷґଘؔͷղܾ ϦτϥΠॲཧͳͲΛ͏·ͬͯ͘͘ΕΔ IUUQTHJUIVCDPNBJSCOCBJSqPX
·ͱΊ w "1*Λࢧ͑Δٕज़ %%%.JDSP4FSWJDFT%PDLFS w ΫϩʔϥʔΛࢧ͑Δٕज़ ࣗಈԽޮԽ w σʔλੳΛࢧ͑Δٕज़ ($1#JH2VFSZ5BCMFBV%BUBQSPD
8F`SF)JSJOH 7"4*-:ςΫϊϩδʔͰ ϑΝογϣϯͷੈքΛม͑Α͏ͱ͍ͯ͠ΔձࣾͰ͢ νϟϨϯδͯ͠Έ͍ͨਓΛ ͓͓ͪͯ͠Γ·͢ IUUQWBTJMZKQ ઈࢍ৽نࣄۀ։ൃதʂ