Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
新卒が考えた理想のDS新卒研修
Search
ninohira
November 09, 2018
1
810
新卒が考えた理想のDS新卒研修
ninohira
November 09, 2018
Tweet
Share
More Decks by ninohira
See All by ninohira
[ICML2021 論文読み会]Revisiting Rainbow: Promoting more Insightful and Inclusive Deep Reinforcement Learning Research
ninohira
0
1.4k
[論文紹介]Jukebox: A Generative Model for Music
ninohira
0
730
無駄分析を避ける為にデータサイエンティストに求められる能力
ninohira
3
13k
アーティストにとっての「愛」とは?~What is ”Love" for artist?~
ninohira
1
10k
Data Gateway Talk Vol.5運営資料
ninohira
1
520
今再びのRによる因果推論_Causal Interference by R_#japanr
ninohira
2
10k
因果推論の基礎とその罠 _Basic and Trap of Causal Inference_#白金鉱業
ninohira
5
13k
ドキュメンテーションのすヽめ_#MLbeginners
ninohira
1
740
Data Gateway Talk Vol.1運営資料
ninohira
1
3.1k
Featured
See All Featured
Balancing Empowerment & Direction
lara
5
740
The Invisible Side of Design
smashingmag
302
51k
Embracing the Ebb and Flow
colly
88
4.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
33
1.8k
What's in a price? How to price your products and services
michaelherold
246
12k
Mobile First: as difficult as doing things right
swwweet
225
10k
Six Lessons from altMBA
skipperchong
29
4.1k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.1k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Designing for humans not robots
tammielis
254
26k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Music & Morning Musume
bryan
46
6.9k
Transcript
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम ਔϊฏকਓ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 2 ࢿྉެ։ ࢿྉʑconnpassʹެ։͠·͢ TwitterͰͷҙݟOKͰ͢ ໔ࣄ߲ ຊൃදݸਓͷݟղͰ͋Γɺ ॴଐ͢Δ৫ͷݟղͰ͋Γ·ͤΜ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ࣗݾհ 3 ਔϊฏɹকਓ Masato Ninohira ֶੜ ࣾձਓ झຯ
ڞಉݚڀઌͷσʔλ × ػցֶशΛ༻͍ͨఏҊ = ࣮࣭डୗੳ(※ύοέʔδ͚ͩͰͳ͘ɺʹ߹Θͤͨख๏ͷ։ൃ͕ϝΠϯ) ڧԽֶशҊ݅ Kaggle׆ಈਪਐ෦ͷ্ཱͪ͛ 2018৽ଔσʔλαΠΤϯςΟετ άϧϝαΠτɾ൪ΛݟΔ B’zϑΝϯ τϐοΫϞσϧw2vΛ༻͍ͨՎࢺͷੳ https://pira-nino.hatenablog.com/
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ͏ͪͷձࣾ ৽ଔੳ OR த్ະܦݧ ࠾ͬͯΔΑʔͬͯํ ͓ฉ͖͠·ʔ͢ 4 ԿΛݚमͰΕ͍͍͔໎ͬͯΔΑʔͬͯํ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ͓ฉ͖͠·ʔ͢ 5 ͏ͪͷձࣾ ৽ଔσʔλαΠΤϯςΟετ࠾ͬͯΔΑʔͬͯํ ԿΛݚमͰΕ͍͍͔໎ͬͯΔΑʔͬͯํ σʔλαΠΤϯςΟετͷҭͰ ʮ͜Μͳ͜ͱͨ͠Β͍͍ͷͰʯ Λड͚ΔଆͷࢹͰ͠·͢ɻ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ظؒ × ϕʔεɾΦϓγϣϯ 6 ظ ɾ ظ ϕʔε
ɾ Φϓγϣϯ ※ϏδωεΑΓαΠΤϯεدΓͷ͠·͢ ͙͢ʹಋೖͰ͖ΔʮΦϓγϣϯʯΛϝΠϯʹ͠·͢
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ظʢೖࣾʙ3ϲ݄ʣʢ͍ΘΏΔ৽ଔݚमʣ 7 ϕʔε ձࣾͷํʹ߹ΘͤΔ ɾ༷ʑͳۀछͰ߹ಉ ɾ࠷ڧͷΤϯδχΞʹ͢Δ ฐࣾͷྫ ɾӦۀಉߦ
ݱ࣮ͷϏδωεݫ͍͜͠ͱΛΔ ɾKaglle (2DAY) EDA -> ༧ଌ ͷྲྀΕΛΕΔʴӳޠʹ׳ΕΔ ɾ1DAY ࣾձՊݟֶ ̍ͷྲྀΕʴࡉ͔͍࡞ۀ༰ΛΕΔ ɾࣾυΩϡϝϯτΛݟΔ PJTͷਐߦաఔͳͲձࣾΛΕΔ Φϓγϣϯ ϝΠϯ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ظʢೖࣾ3ϲ݄ʙʣ 8 ϕʔε ࣮Ҋ݅Λܦݧ ɾ՝ਤॻ Ҋ͚݅ͩͰ౷ܭɾػցֶशͷࣝΛ͚ͭΔͷࠔ ɾΞτϓοτ࡞ͷྭ ɹ
ࣾWIKIɾษڧձɿू߹ ɹQIITAɾϒϩάɿݸਓɾձࣾͷϒϥϯσΟϯά Φϓγϣϯ ɾ࣮Ҋ݅ΛΔͷ͕Ұ൪ ɾಛʹϏδωεྗ͜͜Ͱͭ͘ ϝΠϯ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 গ͠Ͱ͝ࢀߟʹͳΕ͍Ͱ͢ɻ 9