Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ドキュメンテーションのすヽめ_#MLbeginners
Search
ninohira
October 27, 2019
Technology
1
690
ドキュメンテーションのすヽめ_#MLbeginners
ML for Beginners! MeetUp登壇資料
#MLbeginners
ninohira
October 27, 2019
Tweet
Share
More Decks by ninohira
See All by ninohira
[ICML2021 論文読み会]Revisiting Rainbow: Promoting more Insightful and Inclusive Deep Reinforcement Learning Research
ninohira
0
1.4k
[論文紹介]Jukebox: A Generative Model for Music
ninohira
0
650
無駄分析を避ける為にデータサイエンティストに求められる能力
ninohira
3
12k
アーティストにとっての「愛」とは?~What is ”Love" for artist?~
ninohira
1
9.9k
Data Gateway Talk Vol.5運営資料
ninohira
1
480
今再びのRによる因果推論_Causal Interference by R_#japanr
ninohira
2
10k
因果推論の基礎とその罠 _Basic and Trap of Causal Inference_#白金鉱業
ninohira
5
12k
Data Gateway Talk Vol.1運営資料
ninohira
1
3k
新卒が考えた理想のDS新卒研修
ninohira
1
780
Other Decks in Technology
See All in Technology
re:Invent2024 KeynoteのAmazon Q Developer考察
yusukeshimizu
1
150
自社 200 記事を元に整理した読みやすいテックブログを書くための Tips 集
masakihirose
2
330
re:Invent 2024のふりかえり
beli68
0
110
新卒1年目、はじめてのアプリケーションサーバー【IBM WebSphere Liberty】
ktgrryt
0
110
JAWS-UG20250116_iOSアプリエンジニアがAWSreInventに行ってきた(真面目編)
totokit4
0
140
新しいスケーリング則と学習理論
taiji_suzuki
10
3.8k
深層学習と3Dキャプチャ・3Dモデル生成(土木学会応用力学委員会 応用数理・AIセミナー)
pfn
PRO
0
460
商品レコメンドでのexplicit negative feedbackの活用
alpicola
1
350
「隙間家具OSS」に至る道/Fujiwara Tech Conference 2025
fujiwara3
7
6.4k
My small contributions - Fujiwara Tech Conference 2025
ijin
0
1.4k
embedパッケージを深掘りする / Deep Dive into embed Package in Go
task4233
1
210
I could be Wrong!! - Learning from Agile Experts
kawaguti
PRO
8
3.4k
Featured
See All Featured
Writing Fast Ruby
sferik
628
61k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
A Tale of Four Properties
chriscoyier
157
23k
Making Projects Easy
brettharned
116
6k
Git: the NoSQL Database
bkeepers
PRO
427
64k
The Language of Interfaces
destraynor
155
24k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
YesSQL, Process and Tooling at Scale
rocio
170
14k
Making the Leap to Tech Lead
cromwellryan
133
9k
Transcript
υΩϡϝϯςʔγϣϯͷ͢ʍΊ Recommend to Documentation
Recommend to Documentation 免責事項 / お願い - 本登壇は個⼈の⾒解であり、所属する組織の公式⾒解ではありません - 社会⼈2年⽬のビギナーなので優しい⽬で⾒てください
-「お気持ち」的な内容がメインになります - 受託分析データサイエンティスト視点なので、多少バイアスがあります - ツイッターにたくさんつぶやくと運営&⾃分が喜びますので、たくさんツイートしてください 2/14
Recommend to Documentation 質問 ドキュメンテーション⼤切だと感じたことある⽅︕︕ (深掘り) いつ / どうして そう思ったかを
考えました︖ 「誰か」に「何か」を伝えることって⼤切
Recommend to Documentation ⾃⼰紹介 学⽣ 早稲⽥⼤学 創造理⼯学研究科 経営システム⼯学専攻 共同研究先のマーケティングデータ ×
データサイエンス 仕事 データサイエンティスト @BrainPad 2018年新卒 強化学習 / NLP / 統計的因果推論 / 画像異常検知 趣味 仁ノ平 将⼈ Masato Ninohira (@nino_pira) Data Gateway Talk 主催 B’zファン(⾳楽×データ分析のイベント企画now) ブログ︓データサイエンティスト⾒習いの⽇常 フットサル 4/14
Recommend to Documentation ⽬次 - Why Documentation? - ドキュメントの分類 -
コード / 分析レポート - まとめ 5/14
Recommend to Documentation ⾃分の記憶の共有 = 不可能 Why Documentation︖ Impossible to
SHARE Brain 「誰か」に「何か」を伝えたい Idea ケースに応じたドキュメンテーション Want to SHARE Idea SHARE by Document SHARE 6/14
Recommend to Documentation ドキュメントの分類 ※MECEではないです。作為的に⽊を切っています ※「メール / 議事録」も考えましたが、分析内容を 直接書くことは稀だと思いましたのでスコープ外 Who
- 分析チーム - 意思決定者 - コンピュータ - 分析結果 / next アクション - 意思決定者への レポートに必要な素材選定 - ⾃分のコードの確認 - 分析の結果を正しく伝え、意思決定のサポート - 回るコード / 早いコード - 分析レポート - コード - 分析レポート What Document - コード 「誰」に「何を伝えたいか」の構造化が良いドキュメント化へのポイント 7/14
Recommend to Documentation コード コンピュータ & ⼈間に読みやすいコード 計算速度 冗⻑なコードの回避 例︓
組み込み関数のsumを使う 可読性の⾼い実装 - 明瞭なディレクトリ構成 - コーディング規約 /適切なコメント - 明瞭なプルリク 8/14
Recommend to Documentation 参考︓ ディレクトリ構造のテンプレ ⾃分はこれに⾃分専⽤の 開発環境特化素材を加えてる (例︓Docker) 9/14
Recommend to Documentation 分析レポート 前提 1. 分析には「⽬的」があり「概要」/ 「結果」があり「Next Action」が絶対にある 2.
対象者が求めているレベル感に合わす 意思決定者 詳しく知りたい 結果だけ知りたい 分析メンバー 社内wiki / 分析レポート 詳しく知らせる必要がある スライド 作成モデルをシステム化することでxx万円の売り上げ向上 コスト︓xxx Income︓xxx ROI︓xxx (期間︓zzxxx~xxxx) 作成モデルをシステム化することでxx万円の売り上げ向上 モデルの精度 学習︓xxx テスト︓xxx 分析⽬的︓xxxx 概要︓xxxx 結果︓xxxx Next Action︓xxxx 詳細︓xxx ※綺麗なスライドの作り⽅は世の中に 良い本がたくさんあるのでそちらで学んで頂ければと思います Who Level Doc ロジックツリー ここがxx%up 結局、分析結果をステークホルダーに伝えられないとその分析に価値はない 10/14
Recommend to Documentation 参考︓コンフルエンスを⽤いた分析レポート作成 オンラインで共有 = 情報の共有の閾値が低 (全ての実験結果をコンフルに記載) 11/14
Recommend to Documentation 参考︓分析レポート以外の記事もたくさん書いてます 12/14
Recommend to Documentation 参考︓どう鍛えるの︖ 意識して経験するしかないと思っています。。。 Do Best Every Time ※むしろ良い⽅法をご存知の⽅教えてください、、、
13/14
Recommend to Documentation まとめ - 情報の伝達⼿段としてドキュメンテーションは有効 - 「誰」に「何を」伝えたいかの「構造化」を意識したドキュメント化 14/14
Recommend to Documentation 参考⽂献 - はじめてのNoteと、ドキュメンテーションについて (本登壇はこの資料に超影響を受けてます) - 1分で話せ 世界のトップが絶賛した⼤事なことだけシンプルに伝える技術
- イシューからはじめよ 知的⽣産の「シンプルな本質」 - なぜあなたのPull Requestは読まれないのか - Cookiecutter Data Science