$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゲーム理論の基礎 (非協力ゲーム)
Search
AiTachi
August 06, 2022
Science
0
340
ゲーム理論の基礎 (非協力ゲーム)
ゲーム理論の本当に基本的なところを書きました。
自分の研究への応用はいずれ書きたいと思っています。
AiTachi
August 06, 2022
Tweet
Share
More Decks by AiTachi
See All by AiTachi
Dockerを使っていい感じの環境を作る
tcbnai12
0
240
Other Decks in Science
See All in Science
機械学習 - SVM
trycycle
PRO
1
930
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
データベース01: データベースを使わない世界
trycycle
PRO
1
910
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
2
280
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
420
機械学習 - DBSCAN
trycycle
PRO
0
1.3k
データベース03: 関係データモデル
trycycle
PRO
1
310
研究って何だっけ / What is Research?
ks91
PRO
2
160
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
120
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
630
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
160
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
Typedesign – Prime Four
hannesfritz
42
2.9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Designing for humans not robots
tammielis
254
26k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
120
20k
4 Signs Your Business is Dying
shpigford
186
22k
A Tale of Four Properties
chriscoyier
162
23k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
GitHub's CSS Performance
jonrohan
1032
470k
Balancing Empowerment & Direction
lara
5
790
Transcript
ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 1
目次 戦略型ゲーム 戦略型ゲームの定義 最適反応とナッシュ均衡 混合戦略と混合戦略ナッシュ均衡 数値計算 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai,
Twitter: @tcbn_ai 2
1. 戦略型ゲーム 1.1. 戦略型ゲームの定義 戦略型ゲーム:複数の意思決定主体間の相互作用を表す数理モデル 意思決定主体は自分自身の行動 (純粋戦略) を選択する 行動に対して利得が与えられている 利得は、自分の行動と他の意思決定主体の行動に依存して決まる
数学的に戦略型ゲームを定義する。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 3
Def (戦略型ゲーム) 戦略型ゲーム は、タプル として定義される。 ただし、 : プレイヤーの集合 (有限集合) :
純粋戦略空間 : プレイヤー の純粋戦略集合 : 利得関数、 : プレイヤー の利得関数 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 4
例:囚人のジレンマ , , は以下の表のように定義。 \ プレイヤー が戦略 、プレイヤー が戦略 をとったとき
プレイヤー の利得: プレイヤー の利得: ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 5
補足 :第 要素のみが であるような 次元単位ベクトル とする。 人ゲームの利得は行列 (利得行列) として表現される。 に対して、
, , ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 6
プレイヤー 、プレイヤー の利得行列 は以下のようになる。 囚人のジレンマの例では、 となる。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai,
Twitter: @tcbn_ai 7
1.2 最適反応とナッシュ均衡 とする。 Def (最適反応) が に対する純粋最適反応 他のプレイヤーの行動を固定したときの最適な行動 等価な条件は、 1つとは限らないが、必ず存在する
ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 8
Def (ナッシュ均衡) が (純粋戦略) ナッシュ均衡 自分だけが行動を変更しても得をしない 等価な条件は、 1つとは限らず、存在しない場合もある すべてのプレイヤーにとって合理的 実現すればそこから動かない。どのように実現するかは考えな
い。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 9
例:囚人のジレンマ \ プレイヤー の戦略を に固定したときのプレイヤー の利得 プレイヤー が をとる: 、プレイヤー
が をとる: プレイヤー の戦略を に固定したときのプレイヤー の利得 プレイヤー が をとる: 、プレイヤー が をとる: ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 10
プレイヤー の戦略を固定したときも同様。 最適反応 に対して に対して ナッシュ均衡: 囚人のジレンマでは、ナッシュ均衡はパレート最適ではない。 パレート最適:自分の利得を上げるには他のプレイヤーの利得 を悪化させる状態 双方のプレイヤーにとって利得が一番良いのは
となるこ と。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 11
1.3 混合戦略と混合戦略ナッシュ均衡 ゲーム を考える。 上の確率分布 をプレイヤー の混合戦略と呼ぶ。 は以下のように表される。 また、純粋戦略空間 に対応する混合戦略空間
は、 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 12
補足 は単位ベクトル を頂点とする 次元単位単 体となる。 のとき、混合戦略 は、線分 , 上の点である。 ゲーム理論の基礎
(非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 13
以下の記号を定義する。 : で が実際に起こる確率 利得関数の混合戦略への拡張 (期待利得関数) は、以下で定義される。 , ゲーム理論の基礎 (非協力ゲーム)
AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 14
ゲーム は、 に拡張される。 人ゲームとき、利得関数 は利得行列 を用いて以下のよう に表現される。 ゲーム理論の基礎 (非協力ゲーム) AiTachi,
GitHub:tcbn-ai, Twitter: @tcbn_ai 15
例:囚人のジレンマ 混合戦略集合 は以下のように定義される。 利得関数 は以下のように定義される。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter:
@tcbn_ai 16
Def (最適反応) を に対する純粋戦略最適反応、 を に対する混合戦略最適反応と呼ぶ。 純粋戦略最適反応対応 : 混合戦略最適反応対応 :
ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 17
Def (ナッシュ均衡) が成り立つとき、 をナッシュ均衡という。 ナッシュ均衡 すべてのプレイヤーにとって合理的な解 有限ゲームでは必ず存在 (複数存在する可能性あり) ゲーム理論の基礎 (非協力ゲーム)
AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 18
例:調整ゲーム \ ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 19
プレイヤー の混合戦略を で固定する。プレイヤ ー が純粋戦略をとるときの期待利得は、 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter:
@tcbn_ai 20
プレイヤー の混合戦略を で固定する。プレイヤー が純粋戦略をとるときの期待利得は、 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai
21
混合戦略最適反応対応 は、 と求められる。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 22
ナッシュ均衡は ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 23
1.4 数値計算 Python の nashpy というパッケージを使うと、2人ゲームの定義、ナ ッシュ均衡の導出が可能。 python3 -m venv
~/.venvs/game_numerical source ~/.venvs/game_numerical/bin/activate (game_numerical) pip install --upgrade pip (game_numerical) pip install -r requirements.txt requirements.txt には、 numpy , nashpy , jupyter , ipykernel が記述 されていれば良い。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 24
例:じゃんけん A = np.array([[0, 1, -1], [-1, 0, 1], [1,
-1, 0]]) B = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]]) coordination_game = nash.Game(A, B) coordination_game ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 25
Zero sum game with payoff matrices: Row player: [[ 0
1 -1] [-1 0 1] [ 1 -1 0]] Column player: [[ 0 -1 1] [ 1 0 -1] [-1 1 0]] ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 26
equilibria = coordination_game.vertex_enumeration() for eq in equilibria: print(eq) (array([0.33333333, 0.33333333,
0.33333333]), array([0.33333333, 0.33333333, 0.33333333])) ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 27
参考文献 [1] 岡田章, ゲーム理論, 2011. [2] H. Peter, Game Theory:
A Multi-Leveled Approach, Springer, 2015. [3] Nashpy's documentation, accessed on 08/06/2022 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 28