Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゲーム理論の基礎 (非協力ゲーム)
Search
AiTachi
August 06, 2022
Science
0
250
ゲーム理論の基礎 (非協力ゲーム)
ゲーム理論の本当に基本的なところを書きました。
自分の研究への応用はいずれ書きたいと思っています。
AiTachi
August 06, 2022
Tweet
Share
More Decks by AiTachi
See All by AiTachi
Dockerを使っていい感じの環境を作る
tcbnai12
0
220
Other Decks in Science
See All in Science
観察研究における因果推論
nearme_tech
PRO
1
110
Mechanistic Interpretability の紹介
sohtakahashi
0
440
はじめての「相関と因果とエビデンス」入門:“動機づけられた推論” に抗うために
takehikoihayashi
17
7k
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
takuma_matsubara
0
110
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
690
240510 COGNAC LabChat
kazh
0
160
機械学習による確率推定とカリブレーション/probabilistic-calibration-on-classification-model
ktgrstsh
2
290
理論計算機科学における 数学の応用: 擬似ランダムネス
nobushimi
1
380
小杉考司(専修大学)
kosugitti
2
580
20240420 Global Azure 2024 | Azure Migrate でデータセンターのサーバーを評価&移行してみる
olivia_0707
2
930
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.2k
How were Quaternion discovered
kinakomoti321
2
1.1k
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
171
50k
Imperfection Machines: The Place of Print at Facebook
scottboms
266
13k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.3k
Being A Developer After 40
akosma
89
590k
Documentation Writing (for coders)
carmenintech
67
4.5k
Embracing the Ebb and Flow
colly
84
4.5k
How GitHub (no longer) Works
holman
311
140k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
930
Transcript
ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 1
目次 戦略型ゲーム 戦略型ゲームの定義 最適反応とナッシュ均衡 混合戦略と混合戦略ナッシュ均衡 数値計算 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai,
Twitter: @tcbn_ai 2
1. 戦略型ゲーム 1.1. 戦略型ゲームの定義 戦略型ゲーム:複数の意思決定主体間の相互作用を表す数理モデル 意思決定主体は自分自身の行動 (純粋戦略) を選択する 行動に対して利得が与えられている 利得は、自分の行動と他の意思決定主体の行動に依存して決まる
数学的に戦略型ゲームを定義する。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 3
Def (戦略型ゲーム) 戦略型ゲーム は、タプル として定義される。 ただし、 : プレイヤーの集合 (有限集合) :
純粋戦略空間 : プレイヤー の純粋戦略集合 : 利得関数、 : プレイヤー の利得関数 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 4
例:囚人のジレンマ , , は以下の表のように定義。 \ プレイヤー が戦略 、プレイヤー が戦略 をとったとき
プレイヤー の利得: プレイヤー の利得: ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 5
補足 :第 要素のみが であるような 次元単位ベクトル とする。 人ゲームの利得は行列 (利得行列) として表現される。 に対して、
, , ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 6
プレイヤー 、プレイヤー の利得行列 は以下のようになる。 囚人のジレンマの例では、 となる。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai,
Twitter: @tcbn_ai 7
1.2 最適反応とナッシュ均衡 とする。 Def (最適反応) が に対する純粋最適反応 他のプレイヤーの行動を固定したときの最適な行動 等価な条件は、 1つとは限らないが、必ず存在する
ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 8
Def (ナッシュ均衡) が (純粋戦略) ナッシュ均衡 自分だけが行動を変更しても得をしない 等価な条件は、 1つとは限らず、存在しない場合もある すべてのプレイヤーにとって合理的 実現すればそこから動かない。どのように実現するかは考えな
い。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 9
例:囚人のジレンマ \ プレイヤー の戦略を に固定したときのプレイヤー の利得 プレイヤー が をとる: 、プレイヤー
が をとる: プレイヤー の戦略を に固定したときのプレイヤー の利得 プレイヤー が をとる: 、プレイヤー が をとる: ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 10
プレイヤー の戦略を固定したときも同様。 最適反応 に対して に対して ナッシュ均衡: 囚人のジレンマでは、ナッシュ均衡はパレート最適ではない。 パレート最適:自分の利得を上げるには他のプレイヤーの利得 を悪化させる状態 双方のプレイヤーにとって利得が一番良いのは
となるこ と。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 11
1.3 混合戦略と混合戦略ナッシュ均衡 ゲーム を考える。 上の確率分布 をプレイヤー の混合戦略と呼ぶ。 は以下のように表される。 また、純粋戦略空間 に対応する混合戦略空間
は、 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 12
補足 は単位ベクトル を頂点とする 次元単位単 体となる。 のとき、混合戦略 は、線分 , 上の点である。 ゲーム理論の基礎
(非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 13
以下の記号を定義する。 : で が実際に起こる確率 利得関数の混合戦略への拡張 (期待利得関数) は、以下で定義される。 , ゲーム理論の基礎 (非協力ゲーム)
AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 14
ゲーム は、 に拡張される。 人ゲームとき、利得関数 は利得行列 を用いて以下のよう に表現される。 ゲーム理論の基礎 (非協力ゲーム) AiTachi,
GitHub:tcbn-ai, Twitter: @tcbn_ai 15
例:囚人のジレンマ 混合戦略集合 は以下のように定義される。 利得関数 は以下のように定義される。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter:
@tcbn_ai 16
Def (最適反応) を に対する純粋戦略最適反応、 を に対する混合戦略最適反応と呼ぶ。 純粋戦略最適反応対応 : 混合戦略最適反応対応 :
ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 17
Def (ナッシュ均衡) が成り立つとき、 をナッシュ均衡という。 ナッシュ均衡 すべてのプレイヤーにとって合理的な解 有限ゲームでは必ず存在 (複数存在する可能性あり) ゲーム理論の基礎 (非協力ゲーム)
AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 18
例:調整ゲーム \ ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 19
プレイヤー の混合戦略を で固定する。プレイヤ ー が純粋戦略をとるときの期待利得は、 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter:
@tcbn_ai 20
プレイヤー の混合戦略を で固定する。プレイヤー が純粋戦略をとるときの期待利得は、 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai
21
混合戦略最適反応対応 は、 と求められる。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 22
ナッシュ均衡は ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 23
1.4 数値計算 Python の nashpy というパッケージを使うと、2人ゲームの定義、ナ ッシュ均衡の導出が可能。 python3 -m venv
~/.venvs/game_numerical source ~/.venvs/game_numerical/bin/activate (game_numerical) pip install --upgrade pip (game_numerical) pip install -r requirements.txt requirements.txt には、 numpy , nashpy , jupyter , ipykernel が記述 されていれば良い。 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 24
例:じゃんけん A = np.array([[0, 1, -1], [-1, 0, 1], [1,
-1, 0]]) B = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]]) coordination_game = nash.Game(A, B) coordination_game ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 25
Zero sum game with payoff matrices: Row player: [[ 0
1 -1] [-1 0 1] [ 1 -1 0]] Column player: [[ 0 -1 1] [ 1 0 -1] [-1 1 0]] ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 26
equilibria = coordination_game.vertex_enumeration() for eq in equilibria: print(eq) (array([0.33333333, 0.33333333,
0.33333333]), array([0.33333333, 0.33333333, 0.33333333])) ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 27
参考文献 [1] 岡田章, ゲーム理論, 2011. [2] H. Peter, Game Theory:
A Multi-Leveled Approach, Springer, 2015. [3] Nashpy's documentation, accessed on 08/06/2022 ゲーム理論の基礎 (非協力ゲーム) AiTachi, GitHub:tcbn-ai, Twitter: @tcbn_ai 28