Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計学入門講座 第4回スライド
Search
TechmathProject
December 03, 2024
Science
0
52
統計学入門講座 第4回スライド
てくますプロジェクトで行った統計学入門講座の第4回スライドです。
実施:2024/12/02
TechmathProject
December 03, 2024
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第3回スライド
techmathproject
0
37
統計学入門講座 第2回スライド
techmathproject
0
53
統計学入門講座 第1回スライド
techmathproject
0
180
線形代数学入門講座 第1回スライド
techmathproject
0
44
線形代数学入門講座 第2回スライド
techmathproject
0
36
線形代数学入門講座 第3回スライド
techmathproject
0
24
線形代数学入門講座 第4回スライド
techmathproject
0
21
線形代数学入門講座 第5回スライド
techmathproject
0
23
線形代数学入門講座 第6回スライド
techmathproject
0
24
Other Decks in Science
See All in Science
大規模言語モデルの開発
chokkan
PRO
85
41k
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
100
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
3
280
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
160
機械学習を支える連続最適化
nearme_tech
PRO
1
210
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
150
位相的データ解析とその応用例
brainpadpr
1
810
Introduction to Image Processing: 2.Frequ
hachama
0
370
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
120
How were Quaternion discovered
kinakomoti321
2
1.1k
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
PRO
0
280
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
660
Featured
See All Featured
Making Projects Easy
brettharned
116
6k
Building Applications with DynamoDB
mza
93
6.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.7k
Thoughts on Productivity
jonyablonski
68
4.4k
What's in a price? How to price your products and services
michaelherold
244
12k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
The Cult of Friendly URLs
andyhume
78
6.1k
Writing Fast Ruby
sferik
628
61k
Visualization
eitanlees
146
15k
Building an army of robots
kneath
302
45k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Transcript
統計学入門講座 第4回 確率分布 てくますプロジェクト
てくますプロジェクトについて • てくますプロジェクトは, 「考える楽しさを探そう!」が合言葉の, 数学と情報科学の学習コミュニティです. • 数学や情報科学は, 誰にとっても役立ち, 趣味としても楽しめるものです. その魅力を伝えるために,
私たちは活動しています. • 輪読会や講座の実施, 記事などのコンテンツ制作を行っています. • X などで宣伝いただけると大変嬉しいです. (#てくますプロジェクト) • 講師はゆっきん(桑原)が担当します. ◦ 数学教師→システムエンジニア→プログラミング講師 ◦ 数学, プログラミング, ボードゲームが好きです. ◦ てくますプロジェクトやボードゲームコミュニティの運営を 行っています.
本講座について • 本講座は統計学を初めて学ぶ方や, 学び直したい方を対象としています. 本講座の前半は高校数学レベル, 後半は大学教養レベルです. 統計検定2級を目指す方にも適した内容です. • 本講座は各回, 前半で知識のインプット,
後半で問題演習を行います. • 高校や大学以外で数学を学ぶことのできる貴重な場です. 数学を学びたい人たちが集まっていますので, ぜひ交流してください! • 本講座作成にあたり, 特に参考にした本を 右に挙げておきます. 2冊ともオススメです. • 後ろから顔が映らないように写真を撮ることがあります. ご了承ください.
スケジュール 第1回 データの整理 2024/10/07 第4回 確率分布 2024/12/02 第3回 確率の基本 2024/11/18
第2回 データの散らばり 2024/10/28 第5回 検定の枠組み 2024/12/16 第8回 2標本t検定 2025/02/10 第6回 母平均の検定 2025/01/06 第7回 母分散, 母比率の検定 2025/01/27 本講座は全8回です. 各回の内容は以下の通りです.
目次 1. 確率変数と確率分布 確率変数と確率分布は何かや, 期待値と分散について説明します. 2. 代表的な確率分布 二項分布や正規分布などの代表的な確率分布を紹介します.
確率変数と確率分布
確率変数と確率分布とは 確率変数とは, 各値に対してそれぞれ確率が与えられている変数のことをいいます. また, それぞれの値の確率の分布のことを確率分布といいます. (例1)さいころを 1 回投げたときの出た目 X は確率変数である
(例2)コインを 3 回投げたときの表が出た回数 X は確率変数である X 1 2 3 4 5 6 確率 1/6 1/6 1/6 1/6 1/6 1/6 X 0 1 2 3 確率 1/8 3/8 3/8 1/8
確率変数の期待値(平均) 確率変数 X の期待値 E(X)とは, 確率の重み付き平均のことです. (例1)さいころを 1 回投げたときの出た目 X
(例2)コインを 3 回投げたときの表が出た回数 X X 1 2 3 4 5 6 確率 1/6 1/6 1/6 1/6 1/6 1/6 X 0 1 2 3 確率 1/8 3/8 3/8 1/8
確率変数の分散 確率変数 X の分散 V(X) とは, 偏差の2乗の重み付き平均のことです. なお偏差とは, 期待値(平均)からの差のことです.(第2回講座参照) X
の標準偏差 D(X) とは, 分散の(正の)平方根です. (例)コインを 3 回投げたときの表が出た回数 X X 0 1 2 3 偏差 -3/2 -1/2 1/2 3/2 確率 1/8 3/8 3/8 1/8
連続確率分布 0 から 1 までの実数をランダムで決定することを考えましょう. このとき, 選ばれる実数 X は確率変数です. •
(一点の確率は 0 です) • (確率の全体は 1 です) • (区間の確率は面積で表されます) 右のグラフの関数を確率密度関数といいます. 確率密度関数の値が確率そのものではないことに注意しましょう. このように確率変数が連続値のとき, 連続型の確率変数といいます. (先ほどまでの確率変数は, 離散型の確率変数です)
連続確率分布の期待値と分散 • (確率の全体は 1 です) • • 連続確率分布にも期待値と分散を定義することができます. 計算には積分の知識が必要です. 確率密度関数を とします.
期待値と分散の性質 期待値の性質 • • • 分散の性質 • • • は一般には成り立たない.(
X と Y が独立のときには成り立つ) • X, Y は確率変数, c は定数とします. ←分散のもう一つの計算方法 (2乗の期待値ー期待値の2乗)
代表的な確率分布
代表的な離散確率分布:ベルヌーイ分布 ベルヌーイ分布とは, 成功(1)と失敗(0)のように2つの結果しかない試行の確率分布です. 成功の確率を p とすると, 失敗の確率は 1 - p
となります. (例)さいころを1回投げたときの 3 の倍数の目がでる回数 成功確率 p のベルヌーイ分布について 期待値 E(X) 分散 V(X) p = 1/3 のベルヌーイ分布
二項分布とは, ベルヌーイ試行を独立に n 回行ったときに特定の事象が起きる回数の確率分布です. (例)さいころを6回投げたときの 3 の倍数の目がでる回数 試行回数 n ,
成功確率 p の二項分布について 期待値 E(X) ベルヌーイ分布の期待値が p より, 二項分布の期待値は np 分散 V(X) ベルヌーイ分布の分散が p(1 - p) より, 二項分布の分散は np(1 - p) (試行の独立性を使っている) n = 6, p = 1/3 の二項分布 代表的な離散確率分布:二項分布
代表的な離散確率分布:離散一様分布 離散一様分布とは, 取り得る値が離散的であり, かつそれぞれの値が等しい確率で起こる確率分布です. (例)さいころを1回投げたときの出た目の数 {1, 2, … , n}
が等確率で起きる離散一様分布について 期待値 E(X) 分散 V(X) 2乗の期待値 期待値の2乗 {1, 2, 3, 4, 5, 6} の離散一様分布
連続一様分布とは, 取り得る値が連続的であり, かつそれぞれの値が等しい確率で起こる確率分布です. (例)0 から 2 までの実数をランダムに決定 a 〜 b
の実数をランダムに取る離散一様分布について 確率密度関数 期待値 E(X) 分散 V(X) 代表的な連続確率分布:連続一様分布 0 〜 2 の連続一様分布 2乗の期待値 期待値の2乗
代表的な連続確率分布:正規分布 正規分布は最もよく知られた確率分布で, 人間の身長や試験の点数など, さまざまな場面で登場します. 平均値が μ, 標準偏差が σ の正規分布の確率密度関数は次の式で表されます. 特に,
平均値が 0, 標準偏差が 1 の正規分布を標準正規分布と呼び, 次の式で表します. この式については理解しなくてよいですが, グラフの形状などは理解しておきましょう. 正規分布のグラフは左右対称で, 鐘の形(ベルカーブ)が特徴的です. 平均値50, 標準偏差10 の 正規分布
まとめ • 確率変数とは, 各値に対してそれぞれ確率が与えられている変数のことをいいます. また, それぞれの値の確率の分布のことを確率分布といいます. • 確率変数に対し, 期待値(平均)と分散を定義することができます. •
確率分布には離散型の確率分布と連続型の確率分布があります. • 連続型の確率分布において, 確率は面積(積分)で表現されます. • 代表的な離散確率分布には, ベルヌーイ分布, 二項分布, 離散一様分布などがあります. • 代表的な連続確率分布には, 連続一様分布, 正規分布などがあります.
演習問題を解こう!