b C2 : c ∨ d C3 : a ∨ e ∨ f C4 : ¬b ∨ ¬f ∨ g C5 : ¬f ∨ h C6 : ¬b ∨ ¬h ∨ i C7 : ¬g ∨ ¬i LC8 : ¬b ∨ ¬f Lv 1 Lv 2 Lv 3 ܾఆ ¬a b c ¬e f g ¬i ֶशઅΛੜ: ¬b ∨ ¬f 10 / 44
y ∈ {2, 3, 4, 5, 6}) ɼҧ͢ΔൣғΛද͢͜ͱ ͰҎԼͷ 5 અʹූ߸Խ͞ΕΔɽ ¬py≥6 ¬(px≥3 ∧ py≥5 ) ¬(px≥4 ∧ py≥4 ) ¬(px≥5 ∧ py≥3 ) ¬px≥6 x y 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 X X X X X X X X X X X X X X X 22 / 44
y ∈ {2, 3, 4, 5, 6}) ɼҧ͢ΔൣғΛද͢͜ͱ ͰҎԼͷ 5 અʹූ߸Խ͞ΕΔɽ ¬py≥6 ¬(px≥3 ∧ py≥5 ) ¬(px≥4 ∧ py≥4 ) ¬(px≥5 ∧ py≥3 ) ¬px≥6 x y 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 X X X X X X X X X X X X X X X 22 / 44
y ∈ {2, 3, 4, 5, 6}) ɼҧ͢ΔൣғΛද͢͜ͱ ͰҎԼͷ 5 અʹූ߸Խ͞ΕΔɽ ¬py≥6 ¬(px≥3 ∧ py≥5 ) ¬(px≥4 ∧ py≥4 ) ¬(px≥5 ∧ py≥3 ) ¬px≥6 x y 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 X X X X X X X X X X X X X X X 22 / 44
y ∈ {2, 3, 4, 5, 6}) ɼҧ͢ΔൣғΛද͢͜ͱ ͰҎԼͷ 5 અʹූ߸Խ͞ΕΔɽ ¬py≥6 ¬(px≥3 ∧ py≥5 ) ¬(px≥4 ∧ py≥4 ) ¬(px≥5 ∧ py≥3 ) ¬px≥6 x y 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 X X X X X X X X X X X X X X X 22 / 44
y ∈ {2, 3, 4, 5, 6}) ɼҧ͢ΔൣғΛද͢͜ͱ ͰҎԼͷ 5 અʹූ߸Խ͞ΕΔɽ ¬py≥6 ¬(px≥3 ∧ py≥5 ) ¬(px≥4 ∧ py≥4 ) ¬(px≥5 ∧ py≥3 ) ¬px≥6 x y 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 X X X X X X X X X X X X X X X 22 / 44
y ∈ {2, 3, 4, 5, 6}) ɼҧ͢ΔൣғΛද͢͜ͱ ͰҎԼͷ 5 અʹූ߸Խ͞ΕΔɽ ¬py≥6 ¬(px≥3 ∧ py≥5 ) ¬(px≥4 ∧ py≥4 ) ¬(px≥5 ∧ py≥3 ) ¬px≥6 x y 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 X X X X X X X X X X X X X X X 22 / 44
, 6} (x + y ≤ 7) p ∨ (x − 2y ≥ 3) q (x − y ≤ −4) r ∨ (2x + y ≥ 13) s ໋நԽ p ∨ q r ∨ s Lv 1 Lv 2 ܾఆ q r ཧʹΑΓໃ६ݕग़ എܠཧιϧόʔ x − 2y ≥ 3 x − y ≤ −4 27 / 44
clauses quality in modern SAT solvers. In Proceedings of the 21st International Joint Conference on Articial Intelligence (IJCAI 2009), pages 399404. Bayardo Jr., Roberto J. and Schrag, Robert (1997). Using CSP look-back techniques to solve real-world SAT instances. In Proceedings of the 14th National Conference on Articial Intelligence (AAAI 1997), pages 203208. Davis, Martin, Logemann, George , and Loveland, Donald W. (1962). A machine program for theorem-proving. Communications of the ACM, 5(7):394397. 1 / 8
and CSP techniques. In Proceedings of the 11th International Joint Conference on Articial Intelligence (IJCAI 1989), pages 290296. Eén, Niklas and Sörensson, Niklas (2003). An extensible SAT-solver. In Proceedings of the 6th International Conference on Theory and Applications of Satisability Testing (SAT 2003), LNCS 2919, pages 502518. ುౡ ӳ, ؠপ ࣏ , Ҫ্ ࠀາ (2012). Glueminisat 2.2.5: ୯ҐൖΛଅֶ͢शઅͷੵۃత֫ಘઓུʹ جͮ͘ߴ SAT ιϧόʔ. ίϯϐϡʔλιϑτΣΞ, 29(4):211230. 2 / 8
Morgan, Banbara, Mutsunori , and Tamura, Naoyuki (2025). A sat-based method for counting all singleton attractors in boolean networks. In Proceedings of the Thirty-Fourth International Joint Conference on Articial Intelligence, IJCAI 2025, Montreal, Canada, August 16-22, 2025, pages 26012609. ijcai.org. ງԬ ਅະ, ߶ल , ాଜ ೭ (2021). Cdcl ܕ sat ιϧόʔͷ෦ಈ࡞ՄࢹԽπʔϧ. B3. 3 / 8
of hard combinatorial problems. In Proceedings of the IFIP 13th World Computer Congress, pages 253258. Katebi, Hadi, Sakallah, Karem A. , and Silva, João P. Marques (2011). Empirical study of the anatomy of modern sat solvers. In Proceedings of the 14th International Conference on Theory and Applications of Satisability Testing (SAT 2011), LNCS 6695, pages 343356. Luby, Michael, Sinclair, Alistair , and Zuckerman, David (1993). Optimal speedup of Las Vegas algorithms. Information Processing Letters, 47(4):173180. 4 / 8
GRASP: A search algorithm for propositional satisability. IEEE Transactions on Computers, 48(5):506521. Moskewicz, Matthew W., Madigan, Conor F., Zhao, Ying, Zhang, Lintao , and Malik, Sharad (2001). Cha: Engineering an ecient SAT solver. In Proceedings of the 38th Design Automation Conference (DAC 2001), pages 530535. ುౡ ӳ , ߶ल (2010). ߴ SAT ιϧόʔͷݪཧ. ਓೳֶձࢽ, 25(1):6876. 5 / 8
encoding: From tractable csp to tractable sat. In Proceedings of the 14th International Conference on Theory and Applications of Satisability Testing (SAT 2011), LNCS 6695, pages 371372. Pipatsrisawat, Knot and Darwiche, Adnan (2007). A lightweight component caching scheme for satisability solvers. In Proceedings of the 10th International Conference on Theory and Applications of Satisability Testing (SAT 2007), LNCS 4501, pages 294299. 6 / 8
(1996). Local search strategies for satisability testing. In Johnson, David J. and Trick, Michael A., editors, Cliques, Coloring, and Satisability: the Second DIMACS Implementation Challenge, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 521532. American Mathematical Society. Soh, Takehide, Banbara, Mutsunori , and Tamura, Naoyuki (2017). Proposal and evaluation of hybrid encoding of CSP to SAT integrating order and log encodings. International Journal on Articial Intelligence Tools, 26(1):129. 7 / 8
Banbara, Mutsunori (2009). Compiling nite linear CSP into SAT. Constraints, 14(2):254272. Walsh, Toby (2000). SAT v CSP. In Proceedings of the 6th International Conference on Principles and Practice of Constraint Programming (CP 2000), pages 441456. 8 / 8