Upgrade to Pro — share decks privately, control downloads, hide ads and more …

福井大学 情報・メディア学科 学士 研究発表

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for tyabu12 tyabu12
February 12, 2016
26

福井大学 情報・メディア学科 学士 研究発表

Avatar for tyabu12

tyabu12

February 12, 2016
Tweet

Transcript

  1. എܠ ۠ؒԋࢉ ܭࢉػ্Ͱߴ৴པʹ਺஋ܭࢉΛ͢Δํ๏ ۠ؒԋࢉϥΠϒϥϦ #PPTU $ LW #PPTUվྑ */5-"# ."5-"#

     LWͷ࣮૷ྫ ۠ؒಉ࢜ͷֻ͚ࢉͷΞϧΰϦζϜͷൈਮ ∀ ", $ ∈ &(() " ≤ 0 → " > 0 → $ ≤ 0 → $ ≤ 0 → "×$ ≈ [1("×$), ∆("×$)] 2
  2. എܠ ۠ؒԋࢉ ܭࢉػ্Ͱߴ৴པʹ਺஋ܭࢉΛ͢Δํ๏ ۠ؒԋࢉϥΠϒϥϦ #PPTU $ LW #PPTUվྑ */5-"# ."5-"#

     LWͷ࣮૷ྫ ۠ؒಉ࢜ͷֻ͚ࢉͷΞϧΰϦζϜͷൈਮ ∀ ", $ ∈ &(() " ≤ 0 → " > 0 → $ ≤ 0 → $ ≤ 0 → "×$ ≈ [1("×$), ∆("×$)] 3 όάͷࠞೖՄೳੑ ϗϯτʹߴ৴པʁ
  3. ఏҊख๏ 8IZʹΑΓࣗಈత ର࿩తͳఆཧূ໌ث Λ૊Έ߹ΘͤͨϓϩάϥϜݕূ 5 ಛ௕ • ࢓༷෇͖ ϓϩάϥϜ͔Βݕূ৚݅ͷࣗಈੜ੒ •

    ॊೈͳূ໌ ·ͣࣗಈূ໌ ˠ ࢒ΓΛػցࢧԉ෇ͷର࿩ূ໌ • ূ໌ࡁΈϓϩάϥϜͷࣗಈΤϯίʔυ ˠ ূ໌ͨ͠ϓϩάϥϜΛͦͷ··࣮ߦͰ͖Δʂ
  4. ۠ؒԋࢉ ܭࢉػ্Ͱ ߴ৴པʹ਺஋ܭࢉΛ͢Δํ๏ දهͱఆٛ! = ! , ! ∶= %

    ∈ ℝ ! ≤ % ≤ ! } 6 •Լݶ ! ͱ ্ݶ ! ͸ුಈখ਺఺਺ Լݶ͸Լ޲͖ * ্ݶ͸্޲͖ ∆ ʹؙΊΔ ˠ ଘࡏ͢ΔͰ͋Ζ͏ਅͷղΛؚΈͳ͕Βܭࢉ •࣮਺ͷԋࢉಉ༷ʹ ࢛ଇԋࢉΛఆٛՄೳ Ճࢉͷఆٛͱ࣮૷ ! + - ≔ % + / % ∈ ! ∧ / ∈ -} ≈ [* ! + - , ∆( ! + - )] ࣮૷ͷܭࢉྫ 2,4 + −3,5 = [2 − 3, 4 + 5] = [−1,9]
  5. ఆཧূ໌ث ࿦ཧֶʹج͖ͮఆཧͷଥ౰ੑΛ൑ఆ ఆཧͷྫ ∀", $ ∈ ℕ, " + $

    = $ + " ަ׵๏ଇ 7 4.5ιϧόʔ ࣗಈఆཧূ໌ث • ιϧόʔ͕ࣗಈతʹݕূ • ۙ೥ͷϚγϯεϖοΫͷ޲্ˠ ੑೳ͕ඈ༂తʹ޲্ • ໰୊ܭࢉ͕ݱ࣮త࣌ؒͰఀࢭ͠ͳ͍৔߹͕͋Δ ఆཧূ໌ࢧԉܥ $PR ର࿩ఆཧূ໌ث • ਓͷखʹΑΔର࿩ূ໌ • 4.5ιϧόʔͰূ໌Ͱ͖ͳ͍৔߹ʹ$PRΛ࢖͏
  6. ॳظ৚݅ Λຬͨ͢ ϓϩάϥϜ Λ࣮ߦͯ͠ఀࢭ ࣄޙ৚݅ Λຬͨ͢ ԋ៷త ϓϩάϥϜݕূ 8 ࢓༷෇͖ϓϩάϥϜ͕ਖ਼͍͜͠ͱΛ

    ԋ៷తͳਪ࿦ )PBSF࿦ཧ ʹΑΓূ໌ ॳظ৚݅ɺࣄޙ৚݅࿦ཧࣜ ϓϩάϥϜஞ࣍ݴޠͷจ ϓϩάϥϜ͕ਖ਼͍͠
  7. 8IZϓϥοτϑΥʔϜ ࢓༷෇͖ ϓϩάϥϜ ݕূ৚݅ͷ ܭࢉ ূ໌ثʹΑΔ ଥ౰ੑ൑ఆ 8IZݴޠ 9 ԋ៷త

    ϓϩάϥϜݕূͷͨΊʹ։ൃ • ࣮਺΍ුಈখ਺఺਺ͳͲΛѻ͑Δඪ४ϥΠϒϥϦ • ෳ਺ͷఆཧূ໌ث 4.5ιϧόʔ $PR Λར༻Մೳ • (6*΋࢖͑Δʂ ϓϩάϥϜͷਖ਼͠͞ͷূ໌Λ ΄΅ࣗಈԽʂ
  8. ྫՃࢉԋࢉͷݕূ ࣮૷ͷΈ 10 type interval = { inf: double; sup:

    double; } let add (X Y: interval) : interval = { inf = add_down X.inf Y.inf; sup = add_up X.sup Y.sup; } ! + # ≈ [&(! + #), ∆(! + Y)] ࣮૷
  9. ྫՃࢉԋࢉͷݕূ ࢓༷෇͖ 11 type interval = { inf: double; sup:

    double; } invariant { inf ≤ sup } let add (X Y: interval) : interval = ensures { forall x y: real. (in x X ∧ in y Y) -> in (x + y) result } { inf = add_down X.inf Y.inf; sup = add_up X.sup Y.sup; } ᶃ ৗʹʮԼݶ ≤ ্ݶʯ ᶄʮ# ∈ % ∧ & ∈ ' → # + & ∈ % + 'ʯ
  10. ྫՃࢉԋࢉͷݕূ ࢓༷෇͖ ೚ҙͷ۠ؒ 9 : ʹର͠ ࣮૷ͷܭࢉΛͨ͠ͱ͖ ݁Ռͷ۠ؒ͸ ࣄޙ৚݅ᶄ Λຬ͔ͨ͢ʁ

    ·ͨ ۠ؒ஋͸ৗʹ ৚݅ᶃ Λຬ͔ͨ͢ʁ 12 type interval = { inf: double; sup: double; } invariant { inf ≤ sup } let add (X Y: interval) : interval = ensures { forall x y: real. (in x X ∧ in y Y) -> in (x + y) result } { inf = add_down X.inf Y.inf; sup = add_up X.sup Y.sup; } ᶃ ৗʹʮԼݶ ≤ ্ݶʯ ᶄʮ# ∈ % ∧ & ∈ ' → # + & ∈ % + 'ʯ ࢓༷
  11. ৐ࢉԋࢉͷݕূ 4.5ιϧόʔ Ͱ͸Ұ ෦ͷΈͰ͔ࣗ͠ಈূ໌ Ͱ͖ͣ ˠ $PRʹΑΔର࿩ূ ໌ ˠ ӈΛূ໌͢Ε͹Α

    ͍ ্෦෼͸લఏͰԼ ͕ূ໌͢΂͖ఆཧ 16 ੔ཧޙͷ $PR༻ͷݕূ৚݅ $PR*%&
  12. ݕূ݁Ռ  ۠ؒಉ࢜ͷ࢛ଇԋࢉͷ࣮૷Λݕূͨ͠ 17 ݕূ݁Ռ • ୺఺Λ࣮਺ real ͱͨ۠ؒ͠ ˠ

    શͯূ໌ • ୺఺Λුಈখ਺఺਺ double ͱͨ۠ؒ͠ ˠ Ճࢉͱݮࢉ͸ূ໌ ৐ࢉ͸Ұ෦ আࢉ͸ূ໌Ͱ͖ͣ
  13. 18   )  !  $  

     + 2 2 0 0 − 2 2 0 0 × 22 13 9 0 ÷ 8 0 8 0 : "% $$#&'( ࢛ଇԋࢉͷݕূ݁Ռ real୺఺
  14. 19   )  !  $  

     + 2 2 - 0 − 2 2 - 0 × 30 16 - 14 ÷ 12 0 - 12 ࢛ଇԋࢉͷݕূ݁Ռ double୺఺ : "% $$#&'( ؙΊ΍ಛघͳ஋ ແݶେͳͲ ʹΑΓ ݕূ৚͕͔݅ͳΓෳࡶʹͳΓɺର࿩ূ໌͸׬੒Ͱ͖ͳ͔ͬͨ
  15. ۠ؒԋࢉͷݕূ  ۠ؒಉ࢜ͷ࢛ଇԋࢉͷ࣮૷Λ༻͍ͨ ϓϩάϥϜΛݕূΛͨ͠ 20 ݕূ݁Ռ • ۠ؒͱ੔਺ͷੵ real double

    ˠ ূ໌Ͱ͖ͨ • ྦྷ৐ real double ˠ ূ໌Ͱ͖ͨ • ฏํࠜ real ˠ ূ໌Ͱ͖ͨ • ฏํࠜ double) ˠ ূ໌Ͱ͖ͳ͔ͬͨ
  16. ࢛ଇԋࢉͷ࣮૷Λ༻͍ͨ ϓϩάϥϜͷݕূ݁Ռ real୺఺ 21 !     

               21 21 0 0  10 10 0 0   11 10 1 0
  17. ࢛ଇԋࢉͷ࣮૷Λ༻͍ͨ ϓϩάϥϜͷݕূ݁Ռ double୺఺ 22 !     

               21 21 - 0  10 10 - 0   14 10 - 4
  18. ·ͱΊ ఆཧূ໌ثΛ༻͍ͨ۠ؒԋࢉϥΠϒϥϦͷ ݕূͷ֓ཁͱݕূ݁ՌΛࣔͨ͠ 23 ࠓճͷݕূʹΑΓূ໌Ͱ͖ͨ΋ͷ • ୺఺͕࣮਺ͷ۠ؒ • ۠ؒಉ࢜ͷ࢛ଇԋࢉ •

    ۠ؒಉ࢜ͷ࢛ଇԋࢉΛ༻͍ͨ਺஋ܭࢉϓϩάϥϜ • ୺఺͕ුಈখ਺఺਺۠ؒ • ۠ؒಉ࢜ͷՃࢉͱݮࢉ • ۠ؒಉ࢜ͷ৐ࢉͷ৔߹෼͚ͷҰ෦ • ۠ؒಉ࢜ͷ࢛ଇԋࢉΛ༻͍ͨ਺஋ܭࢉϓϩάϥϜ
  19. ࠓޙͷ՝୊ •ුಈখ਺఺਺୺఺ͷ࢛ଇԋࢉͷূ໌ ݕূ৚݅ͷෳࡶԽ ˠ ର࿩ূ໌͸͔ͳΓ೉͍͠ ߟ͑ΒΕΔղܾҊ • ࣮਺୺఺Λิॿఆཧʹ༻͍ͨ4.5ιϧόʔʹΑΔূ໌ •࢒Γͷ۠ؒԋࢉϥΠϒϥϦͷ࣮૷ͷݕূ •

    ॳ౳ؔ਺ ࡾ֯ؔ਺ͳͲ • ුಈখ਺఺਺ ˠ จࣈྻ ͷม׵ •ݕূࡁΈϓϩάϥϜ ˠ 0$BNM ͷΤϯίʔυ • 8IZʹ͸ුಈখ਺఺਺༻ͷΤϯίʔυυϥΠόʔ͸·ͩͳ͍ 24
  20. ࢀߟจݙ • കଜߊ޿ 4.5ιϧόɾ4.5ιϧόͷٕज़ͱԠ༻ ίϯϐϡʔλιϑτ΢ΣΞ   QQ  •

    3BNPO&.PPSF FUBM Introduction to Interval Analysis 4*".1SFTT  • :WFT#FSUPU BOE1JFSSF$BTUFSBO Interactive theorem proving and program develop-ment - Coq’art: The calculus of inductive constructions 4QSJOHFS7FSMBH  25