Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
福井大学 情報・メディア学科 学士 研究発表
Search
tyabu12
February 12, 2016
0
25
福井大学 情報・メディア学科 学士 研究発表
tyabu12
February 12, 2016
Tweet
Share
More Decks by tyabu12
See All by tyabu12
Git セミナー
tyabu12
0
46
Not a Number of Floating Point Problems
tyabu12
0
51
Type-Safe Modular Hash-Consing (Chapter 2)
tyabu12
0
49
Automating the Verification of Floating-Point Programs
tyabu12
0
45
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Optimizing for Happiness
mojombo
379
70k
The Cult of Friendly URLs
andyhume
79
6.5k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Being A Developer After 40
akosma
90
590k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Code Reviewing Like a Champion
maltzj
525
40k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
820
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.6k
The Language of Interfaces
destraynor
160
25k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
Transcript
ࣗಈతɾରతͳ ఆཧূ໌ثΛ༻͍ͨ ۠ؒԋࢉϥΠϒϥϦͷݕূ ଔۀݚڀൃද Ҫେֶ ֶ෦ ใɾϝσΟΞֶՊ ੴҪݚڀࣨ ൃදऀ༅ஐਔ ֶ੶൪߸
1
എܠ ۠ؒԋࢉ ܭࢉػ্Ͱߴ৴པʹܭࢉΛ͢Δํ๏ ۠ؒԋࢉϥΠϒϥϦ #PPTU $ LW #PPTUվྑ */5-"# ."5-"#
LWͷ࣮ྫ ۠ؒಉ࢜ͷֻ͚ࢉͷΞϧΰϦζϜͷൈਮ ∀ ", $ ∈ &(() " ≤ 0 → " > 0 → $ ≤ 0 → $ ≤ 0 → "×$ ≈ [1("×$), ∆("×$)] 2
എܠ ۠ؒԋࢉ ܭࢉػ্Ͱߴ৴པʹܭࢉΛ͢Δํ๏ ۠ؒԋࢉϥΠϒϥϦ #PPTU $ LW #PPTUվྑ */5-"# ."5-"#
LWͷ࣮ྫ ۠ؒಉ࢜ͷֻ͚ࢉͷΞϧΰϦζϜͷൈਮ ∀ ", $ ∈ &(() " ≤ 0 → " > 0 → $ ≤ 0 → $ ≤ 0 → "×$ ≈ [1("×$), ∆("×$)] 3 όάͷࠞೖՄೳੑ ϗϯτʹߴ৴པʁ
Ϟνϕʔγϣϯ ˠ ҆৺ͯ۠ؒ͠ԋࢉϥΠϒϥϦΛ͍͍ͨ ߴ৴པͳܭࢉ త ۠ؒԋࢉϥΠϒϥϦͷ࣮ͷਖ਼͠͞ͷݕূ 4
ఏҊख๏ 8IZʹΑΓࣗಈత ରతͳఆཧূ໌ث ΛΈ߹ΘͤͨϓϩάϥϜݕূ 5 ಛ • ༷͖ ϓϩάϥϜ͔Βݕূ݅ͷࣗಈੜ •
ॊೈͳূ໌ ·ͣࣗಈূ໌ ˠ ΓΛػցࢧԉͷରূ໌ • ূ໌ࡁΈϓϩάϥϜͷࣗಈΤϯίʔυ ˠ ূ໌ͨ͠ϓϩάϥϜΛͦͷ··࣮ߦͰ͖Δʂ
۠ؒԋࢉ ܭࢉػ্Ͱ ߴ৴པʹܭࢉΛ͢Δํ๏ දهͱఆٛ! = ! , ! ∶= %
∈ ℝ ! ≤ % ≤ ! } 6 •Լݶ ! ͱ ্ݶ ! ුಈখ ԼݶԼ͖ * ্ݶ্͖ ∆ ʹؙΊΔ ˠ ଘࡏ͢ΔͰ͋Ζ͏ਅͷղΛؚΈͳ͕Βܭࢉ •࣮ͷԋࢉಉ༷ʹ ࢛ଇԋࢉΛఆٛՄೳ Ճࢉͷఆٛͱ࣮ ! + - ≔ % + / % ∈ ! ∧ / ∈ -} ≈ [* ! + - , ∆( ! + - )] ࣮ͷܭࢉྫ 2,4 + −3,5 = [2 − 3, 4 + 5] = [−1,9]
ఆཧূ໌ث ཧֶʹج͖ͮఆཧͷଥੑΛఆ ఆཧͷྫ ∀", $ ∈ ℕ, " + $
= $ + " ަ๏ଇ 7 4.5ιϧόʔ ࣗಈఆཧূ໌ث • ιϧόʔ͕ࣗಈతʹݕূ • ۙͷϚγϯεϖοΫͷ্ˠ ੑೳ͕ඈ༂తʹ্ • ܭࢉ͕ݱ࣮త࣌ؒͰఀࢭ͠ͳ͍߹͕͋Δ ఆཧূ໌ࢧԉܥ $PR ରఆཧূ໌ث • ਓͷखʹΑΔରূ໌ • 4.5ιϧόʔͰূ໌Ͱ͖ͳ͍߹ʹ$PRΛ͏
ॳظ݅ Λຬͨ͢ ϓϩάϥϜ Λ࣮ߦͯ͠ఀࢭ ࣄޙ݅ Λຬͨ͢ ԋ៷త ϓϩάϥϜݕূ 8 ༷͖ϓϩάϥϜ͕ਖ਼͍͜͠ͱΛ
ԋ៷తͳਪ )PBSFཧ ʹΑΓূ໌ ॳظ݅ɺࣄޙ݅ཧࣜ ϓϩάϥϜஞ࣍ݴޠͷจ ϓϩάϥϜ͕ਖ਼͍͠
8IZϓϥοτϑΥʔϜ ༷͖ ϓϩάϥϜ ݕূ݅ͷ ܭࢉ ূ໌ثʹΑΔ ଥੑఆ 8IZݴޠ 9 ԋ៷త
ϓϩάϥϜݕূͷͨΊʹ։ൃ • ࣮ුಈখͳͲΛѻ͑Δඪ४ϥΠϒϥϦ • ෳͷఆཧূ໌ث 4.5ιϧόʔ $PR Λར༻Մೳ • (6*͑Δʂ ϓϩάϥϜͷਖ਼͠͞ͷূ໌Λ ΄΅ࣗಈԽʂ
ྫՃࢉԋࢉͷݕূ ࣮ͷΈ 10 type interval = { inf: double; sup:
double; } let add (X Y: interval) : interval = { inf = add_down X.inf Y.inf; sup = add_up X.sup Y.sup; } ! + # ≈ [&(! + #), ∆(! + Y)] ࣮
ྫՃࢉԋࢉͷݕূ ༷͖ 11 type interval = { inf: double; sup:
double; } invariant { inf ≤ sup } let add (X Y: interval) : interval = ensures { forall x y: real. (in x X ∧ in y Y) -> in (x + y) result } { inf = add_down X.inf Y.inf; sup = add_up X.sup Y.sup; } ᶃ ৗʹʮԼݶ ≤ ্ݶʯ ᶄʮ# ∈ % ∧ & ∈ ' → # + & ∈ % + 'ʯ
ྫՃࢉԋࢉͷݕূ ༷͖ ҙͷ۠ؒ 9 : ʹର͠ ࣮ͷܭࢉΛͨ͠ͱ͖ ݁Ռͷ۠ؒ ࣄޙ݅ᶄ Λຬ͔ͨ͢ʁ
·ͨ ۠ؒৗʹ ݅ᶃ Λຬ͔ͨ͢ʁ 12 type interval = { inf: double; sup: double; } invariant { inf ≤ sup } let add (X Y: interval) : interval = ensures { forall x y: real. (in x X ∧ in y Y) -> in (x + y) result } { inf = add_down X.inf Y.inf; sup = add_up X.sup Y.sup; } ᶃ ৗʹʮԼݶ ≤ ্ݶʯ ᶄʮ# ∈ % ∧ & ∈ ' → # + & ∈ % + 'ʯ ༷
Ճࢉԋࢉͷݕূ 4.5ιϧόʔ "MU&SHP Ͱূ໌Ͱ͖ͨ 13 4.5ιϧόʔʹΑΔՃࢉͷݕূ݁Ռ 8IZ (6*
ࢉԋࢉͷݕূ 4.5ιϧόʔ ͰҰ ෦ͷ߹Ͱ͔ࣗ͠ಈূ ໌Ͱ͖ͣ 14 4.5ιϧόʔʹΑΔׂޙͷݕ ূ݅ͷݕূ݁Ռ 8IZ (6*
ࢉԋࢉͷݕূ 4.5ιϧόʔ ͰҰ ෦ͷΈͰ͔ࣗ͠ಈূ໌ Ͱ͖ͣ ˠ $PRʹΑΔରূ ໌ 15 8IZ͕ࢉͷݕূϓϩάϥϜ͔Β
ࣗಈܭࢉͨ͠ $PR༻ͷݕূ݅ $PR*%&
ࢉԋࢉͷݕূ 4.5ιϧόʔ ͰҰ ෦ͷΈͰ͔ࣗ͠ಈূ໌ Ͱ͖ͣ ˠ $PRʹΑΔରূ ໌ ˠ ӈΛূ໌͢ΕΑ
͍ ্෦લఏͰԼ ͕ূ໌͖͢ఆཧ 16 ཧޙͷ $PR༻ͷݕূ݅ $PR*%&
ݕূ݁Ռ ۠ؒಉ࢜ͷ࢛ଇԋࢉͷ࣮Λݕূͨ͠ 17 ݕূ݁Ռ • Λ࣮ real ͱͨ۠ؒ͠ ˠ
શͯূ໌ • Λුಈখ double ͱͨ۠ؒ͠ ˠ Ճࢉͱݮࢉূ໌ ࢉҰ෦ আࢉূ໌Ͱ͖ͣ
18 ) ! $
+ 2 2 0 0 − 2 2 0 0 × 22 13 9 0 ÷ 8 0 8 0 : "% $$#&'( ࢛ଇԋࢉͷݕূ݁Ռ real
19 ) ! $
+ 2 2 - 0 − 2 2 - 0 × 30 16 - 14 ÷ 12 0 - 12 ࢛ଇԋࢉͷݕূ݁Ռ double : "% $$#&'( ؙΊಛघͳ ແݶେͳͲ ʹΑΓ ݕূ͕͔݅ͳΓෳࡶʹͳΓɺରূ໌Ͱ͖ͳ͔ͬͨ
۠ؒԋࢉͷݕূ ۠ؒಉ࢜ͷ࢛ଇԋࢉͷ࣮Λ༻͍ͨ ϓϩάϥϜΛݕূΛͨ͠ 20 ݕূ݁Ռ • ۠ؒͱͷੵ real double
ˠ ূ໌Ͱ͖ͨ • ྦྷ real double ˠ ূ໌Ͱ͖ͨ • ฏํࠜ real ˠ ূ໌Ͱ͖ͨ • ฏํࠜ double) ˠ ূ໌Ͱ͖ͳ͔ͬͨ
࢛ଇԋࢉͷ࣮Λ༻͍ͨ ϓϩάϥϜͷݕূ݁Ռ real 21 !
21 21 0 0 10 10 0 0 11 10 1 0
࢛ଇԋࢉͷ࣮Λ༻͍ͨ ϓϩάϥϜͷݕূ݁Ռ double 22 !
21 21 - 0 10 10 - 0 14 10 - 4
·ͱΊ ఆཧূ໌ثΛ༻͍ͨ۠ؒԋࢉϥΠϒϥϦͷ ݕূͷ֓ཁͱݕূ݁ՌΛࣔͨ͠ 23 ࠓճͷݕূʹΑΓূ໌Ͱ͖ͨͷ • ͕࣮ͷ۠ؒ • ۠ؒಉ࢜ͷ࢛ଇԋࢉ •
۠ؒಉ࢜ͷ࢛ଇԋࢉΛ༻͍ͨܭࢉϓϩάϥϜ • ͕ුಈখ۠ؒ • ۠ؒಉ࢜ͷՃࢉͱݮࢉ • ۠ؒಉ࢜ͷࢉͷ߹͚ͷҰ෦ • ۠ؒಉ࢜ͷ࢛ଇԋࢉΛ༻͍ͨܭࢉϓϩάϥϜ
ࠓޙͷ՝ •ුಈখͷ࢛ଇԋࢉͷূ໌ ݕূ݅ͷෳࡶԽ ˠ ରূ໌͔ͳΓ͍͠ ߟ͑ΒΕΔղܾҊ • ࣮Λิॿఆཧʹ༻͍ͨ4.5ιϧόʔʹΑΔূ໌ •Γͷ۠ؒԋࢉϥΠϒϥϦͷ࣮ͷݕূ •
ॳؔ ࡾ֯ؔͳͲ • ුಈখ ˠ จࣈྻ ͷม •ݕূࡁΈϓϩάϥϜ ˠ 0$BNM ͷΤϯίʔυ • 8IZʹුಈখ༻ͷΤϯίʔυυϥΠόʔ·ͩͳ͍ 24
ࢀߟจݙ • കଜߊ 4.5ιϧόɾ4.5ιϧόͷٕज़ͱԠ༻ ίϯϐϡʔλιϑτΣΞ QQ •
3BNPO&.PPSF FUBM Introduction to Interval Analysis 4*".1SFTT • :WFT#FSUPU BOE1JFSSF$BTUFSBO Interactive theorem proving and program develop-ment - Coq’art: The calculus of inductive constructions 4QSJOHFS7FSMBH 25