Upgrade to Pro — share decks privately, control downloads, hide ads and more …

福井大学 情報・メディア学科 学士 研究発表

tyabu12
February 12, 2016
21

福井大学 情報・メディア学科 学士 研究発表

tyabu12

February 12, 2016
Tweet

Transcript

  1. എܠ ۠ؒԋࢉ ܭࢉػ্Ͱߴ৴པʹ਺஋ܭࢉΛ͢Δํ๏ ۠ؒԋࢉϥΠϒϥϦ #PPTU $ LW #PPTUվྑ */5-"# ."5-"#

     LWͷ࣮૷ྫ ۠ؒಉ࢜ͷֻ͚ࢉͷΞϧΰϦζϜͷൈਮ ∀ ", $ ∈ &(() " ≤ 0 → " > 0 → $ ≤ 0 → $ ≤ 0 → "×$ ≈ [1("×$), ∆("×$)] 2
  2. എܠ ۠ؒԋࢉ ܭࢉػ্Ͱߴ৴པʹ਺஋ܭࢉΛ͢Δํ๏ ۠ؒԋࢉϥΠϒϥϦ #PPTU $ LW #PPTUվྑ */5-"# ."5-"#

     LWͷ࣮૷ྫ ۠ؒಉ࢜ͷֻ͚ࢉͷΞϧΰϦζϜͷൈਮ ∀ ", $ ∈ &(() " ≤ 0 → " > 0 → $ ≤ 0 → $ ≤ 0 → "×$ ≈ [1("×$), ∆("×$)] 3 όάͷࠞೖՄೳੑ ϗϯτʹߴ৴པʁ
  3. ఏҊख๏ 8IZʹΑΓࣗಈత ର࿩తͳఆཧূ໌ث Λ૊Έ߹ΘͤͨϓϩάϥϜݕূ 5 ಛ௕ • ࢓༷෇͖ ϓϩάϥϜ͔Βݕূ৚݅ͷࣗಈੜ੒ •

    ॊೈͳূ໌ ·ͣࣗಈূ໌ ˠ ࢒ΓΛػցࢧԉ෇ͷର࿩ূ໌ • ূ໌ࡁΈϓϩάϥϜͷࣗಈΤϯίʔυ ˠ ূ໌ͨ͠ϓϩάϥϜΛͦͷ··࣮ߦͰ͖Δʂ
  4. ۠ؒԋࢉ ܭࢉػ্Ͱ ߴ৴པʹ਺஋ܭࢉΛ͢Δํ๏ දهͱఆٛ! = ! , ! ∶= %

    ∈ ℝ ! ≤ % ≤ ! } 6 •Լݶ ! ͱ ্ݶ ! ͸ුಈখ਺఺਺ Լݶ͸Լ޲͖ * ্ݶ͸্޲͖ ∆ ʹؙΊΔ ˠ ଘࡏ͢ΔͰ͋Ζ͏ਅͷղΛؚΈͳ͕Βܭࢉ •࣮਺ͷԋࢉಉ༷ʹ ࢛ଇԋࢉΛఆٛՄೳ Ճࢉͷఆٛͱ࣮૷ ! + - ≔ % + / % ∈ ! ∧ / ∈ -} ≈ [* ! + - , ∆( ! + - )] ࣮૷ͷܭࢉྫ 2,4 + −3,5 = [2 − 3, 4 + 5] = [−1,9]
  5. ఆཧূ໌ث ࿦ཧֶʹج͖ͮఆཧͷଥ౰ੑΛ൑ఆ ఆཧͷྫ ∀", $ ∈ ℕ, " + $

    = $ + " ަ׵๏ଇ 7 4.5ιϧόʔ ࣗಈఆཧূ໌ث • ιϧόʔ͕ࣗಈతʹݕূ • ۙ೥ͷϚγϯεϖοΫͷ޲্ˠ ੑೳ͕ඈ༂తʹ޲্ • ໰୊ܭࢉ͕ݱ࣮త࣌ؒͰఀࢭ͠ͳ͍৔߹͕͋Δ ఆཧূ໌ࢧԉܥ $PR ର࿩ఆཧূ໌ث • ਓͷखʹΑΔର࿩ূ໌ • 4.5ιϧόʔͰূ໌Ͱ͖ͳ͍৔߹ʹ$PRΛ࢖͏
  6. ॳظ৚݅ Λຬͨ͢ ϓϩάϥϜ Λ࣮ߦͯ͠ఀࢭ ࣄޙ৚݅ Λຬͨ͢ ԋ៷త ϓϩάϥϜݕূ 8 ࢓༷෇͖ϓϩάϥϜ͕ਖ਼͍͜͠ͱΛ

    ԋ៷తͳਪ࿦ )PBSF࿦ཧ ʹΑΓূ໌ ॳظ৚݅ɺࣄޙ৚݅࿦ཧࣜ ϓϩάϥϜஞ࣍ݴޠͷจ ϓϩάϥϜ͕ਖ਼͍͠
  7. 8IZϓϥοτϑΥʔϜ ࢓༷෇͖ ϓϩάϥϜ ݕূ৚݅ͷ ܭࢉ ূ໌ثʹΑΔ ଥ౰ੑ൑ఆ 8IZݴޠ 9 ԋ៷త

    ϓϩάϥϜݕূͷͨΊʹ։ൃ • ࣮਺΍ුಈখ਺఺਺ͳͲΛѻ͑Δඪ४ϥΠϒϥϦ • ෳ਺ͷఆཧূ໌ث 4.5ιϧόʔ $PR Λར༻Մೳ • (6*΋࢖͑Δʂ ϓϩάϥϜͷਖ਼͠͞ͷূ໌Λ ΄΅ࣗಈԽʂ
  8. ྫՃࢉԋࢉͷݕূ ࣮૷ͷΈ 10 type interval = { inf: double; sup:

    double; } let add (X Y: interval) : interval = { inf = add_down X.inf Y.inf; sup = add_up X.sup Y.sup; } ! + # ≈ [&(! + #), ∆(! + Y)] ࣮૷
  9. ྫՃࢉԋࢉͷݕূ ࢓༷෇͖ 11 type interval = { inf: double; sup:

    double; } invariant { inf ≤ sup } let add (X Y: interval) : interval = ensures { forall x y: real. (in x X ∧ in y Y) -> in (x + y) result } { inf = add_down X.inf Y.inf; sup = add_up X.sup Y.sup; } ᶃ ৗʹʮԼݶ ≤ ্ݶʯ ᶄʮ# ∈ % ∧ & ∈ ' → # + & ∈ % + 'ʯ
  10. ྫՃࢉԋࢉͷݕূ ࢓༷෇͖ ೚ҙͷ۠ؒ 9 : ʹର͠ ࣮૷ͷܭࢉΛͨ͠ͱ͖ ݁Ռͷ۠ؒ͸ ࣄޙ৚݅ᶄ Λຬ͔ͨ͢ʁ

    ·ͨ ۠ؒ஋͸ৗʹ ৚݅ᶃ Λຬ͔ͨ͢ʁ 12 type interval = { inf: double; sup: double; } invariant { inf ≤ sup } let add (X Y: interval) : interval = ensures { forall x y: real. (in x X ∧ in y Y) -> in (x + y) result } { inf = add_down X.inf Y.inf; sup = add_up X.sup Y.sup; } ᶃ ৗʹʮԼݶ ≤ ্ݶʯ ᶄʮ# ∈ % ∧ & ∈ ' → # + & ∈ % + 'ʯ ࢓༷
  11. ৐ࢉԋࢉͷݕূ 4.5ιϧόʔ Ͱ͸Ұ ෦ͷΈͰ͔ࣗ͠ಈূ໌ Ͱ͖ͣ ˠ $PRʹΑΔର࿩ূ ໌ ˠ ӈΛূ໌͢Ε͹Α

    ͍ ্෦෼͸લఏͰԼ ͕ূ໌͢΂͖ఆཧ 16 ੔ཧޙͷ $PR༻ͷݕূ৚݅ $PR*%&
  12. ݕূ݁Ռ  ۠ؒಉ࢜ͷ࢛ଇԋࢉͷ࣮૷Λݕূͨ͠ 17 ݕূ݁Ռ • ୺఺Λ࣮਺ real ͱͨ۠ؒ͠ ˠ

    શͯূ໌ • ୺఺Λුಈখ਺఺਺ double ͱͨ۠ؒ͠ ˠ Ճࢉͱݮࢉ͸ূ໌ ৐ࢉ͸Ұ෦ আࢉ͸ূ໌Ͱ͖ͣ
  13. 18   )  !  $  

     + 2 2 0 0 − 2 2 0 0 × 22 13 9 0 ÷ 8 0 8 0 : "% $$#&'( ࢛ଇԋࢉͷݕূ݁Ռ real୺఺
  14. 19   )  !  $  

     + 2 2 - 0 − 2 2 - 0 × 30 16 - 14 ÷ 12 0 - 12 ࢛ଇԋࢉͷݕূ݁Ռ double୺఺ : "% $$#&'( ؙΊ΍ಛघͳ஋ ແݶେͳͲ ʹΑΓ ݕূ৚͕͔݅ͳΓෳࡶʹͳΓɺର࿩ূ໌͸׬੒Ͱ͖ͳ͔ͬͨ
  15. ۠ؒԋࢉͷݕূ  ۠ؒಉ࢜ͷ࢛ଇԋࢉͷ࣮૷Λ༻͍ͨ ϓϩάϥϜΛݕূΛͨ͠ 20 ݕূ݁Ռ • ۠ؒͱ੔਺ͷੵ real double

    ˠ ূ໌Ͱ͖ͨ • ྦྷ৐ real double ˠ ূ໌Ͱ͖ͨ • ฏํࠜ real ˠ ূ໌Ͱ͖ͨ • ฏํࠜ double) ˠ ূ໌Ͱ͖ͳ͔ͬͨ
  16. ࢛ଇԋࢉͷ࣮૷Λ༻͍ͨ ϓϩάϥϜͷݕূ݁Ռ real୺఺ 21 !     

               21 21 0 0  10 10 0 0   11 10 1 0
  17. ࢛ଇԋࢉͷ࣮૷Λ༻͍ͨ ϓϩάϥϜͷݕূ݁Ռ double୺఺ 22 !     

               21 21 - 0  10 10 - 0   14 10 - 4
  18. ·ͱΊ ఆཧূ໌ثΛ༻͍ͨ۠ؒԋࢉϥΠϒϥϦͷ ݕূͷ֓ཁͱݕূ݁ՌΛࣔͨ͠ 23 ࠓճͷݕূʹΑΓূ໌Ͱ͖ͨ΋ͷ • ୺఺͕࣮਺ͷ۠ؒ • ۠ؒಉ࢜ͷ࢛ଇԋࢉ •

    ۠ؒಉ࢜ͷ࢛ଇԋࢉΛ༻͍ͨ਺஋ܭࢉϓϩάϥϜ • ୺఺͕ුಈখ਺఺਺۠ؒ • ۠ؒಉ࢜ͷՃࢉͱݮࢉ • ۠ؒಉ࢜ͷ৐ࢉͷ৔߹෼͚ͷҰ෦ • ۠ؒಉ࢜ͷ࢛ଇԋࢉΛ༻͍ͨ਺஋ܭࢉϓϩάϥϜ
  19. ࠓޙͷ՝୊ •ුಈখ਺఺਺୺఺ͷ࢛ଇԋࢉͷূ໌ ݕূ৚݅ͷෳࡶԽ ˠ ର࿩ূ໌͸͔ͳΓ೉͍͠ ߟ͑ΒΕΔղܾҊ • ࣮਺୺఺Λิॿఆཧʹ༻͍ͨ4.5ιϧόʔʹΑΔূ໌ •࢒Γͷ۠ؒԋࢉϥΠϒϥϦͷ࣮૷ͷݕূ •

    ॳ౳ؔ਺ ࡾ֯ؔ਺ͳͲ • ුಈখ਺఺਺ ˠ จࣈྻ ͷม׵ •ݕূࡁΈϓϩάϥϜ ˠ 0$BNM ͷΤϯίʔυ • 8IZʹ͸ුಈখ਺఺਺༻ͷΤϯίʔυυϥΠόʔ͸·ͩͳ͍ 24
  20. ࢀߟจݙ • കଜߊ޿ 4.5ιϧόɾ4.5ιϧόͷٕज़ͱԠ༻ ίϯϐϡʔλιϑτ΢ΣΞ   QQ  •

    3BNPO&.PPSF FUBM Introduction to Interval Analysis 4*".1SFTT  • :WFT#FSUPU BOE1JFSSF$BTUFSBO Interactive theorem proving and program develop-ment - Coq’art: The calculus of inductive constructions 4QSJOHFS7FSMBH  25