Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[2025-03-25] 初のホリゾンタル SaaS 領域で思うデータ分析職の価値
Search
和田 悠佑
March 27, 2025
Business
0
570
[2025-03-25] 初のホリゾンタル SaaS 領域で思うデータ分析職の価値
「コミュニケーションデータを扱う SaaS 企業が切り拓く、新たなビジネス機会」(
https://ivry.connpass.com/event/346397/
) での発表資料
和田 悠佑
March 27, 2025
Tweet
Share
More Decks by 和田 悠佑
See All by 和田 悠佑
[2025-09-30] Databricks Genie を利用した分析基盤とデータモデリングの IVRy の現在地
wxyzzz
0
740
Other Decks in Business
See All in Business
MEEM_Company_Deck202512.pdf
info_meem
0
910
「回復の場」としてのコミュニティ
emi0726
0
270
Dayz株式会社 / 会社案内
dayzjp
PRO
0
230
Growth Book
kuradashi
0
470
ミツモアAI推進G AI活用Tips50
mmota
0
410
QuackShift 会社紹介資料
riekondo
0
620
Corporate Story (GA technologies Co., Ltd.)
gatechnologies
0
500
対立を超えてビジネス、開発、顧客が本当に欲しかったものを全両立するプロダクト組織の作り方/trade-off basic rsgt2026
moriyuya
1
1.8k
Connected Robotics
cr
1
55k
未経験PdM40%のプロダクトマネージャー組織を作った過程でわかった再現性について
numashi
1
770
サムコ株式会社 第47期第1四半期決算概要
tsuchihashi
0
370
チェンジホールディングス会社紹介資料
changeholdings
0
510
Featured
See All Featured
Designing for Performance
lara
610
70k
Paper Plane (Part 1)
katiecoart
PRO
0
2.9k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Context Engineering - Making Every Token Count
addyosmani
9
590
Thoughts on Productivity
jonyablonski
74
5k
Making Projects Easy
brettharned
120
6.5k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Designing for Timeless Needs
cassininazir
0
110
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
1
340
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
38
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
120
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Transcript
コミュニケーションデータを扱う SaaS 企業が切り拓く、新たなビジネス機会 - Lightning Talks 2025-03-25 株式会社 IVRy -
和⽥悠佑 初のホリゾンタル SaaS 領域で思う データ分析職の価値 #250325_ci_data
2013 年: ヤフー(カーナビ、オークション) Android エンジニア、データサイエンティスト、etc, ... 2019 年: メルカリ(フリマ) 検索機能周りのデータアナリスト、エンジニア
2022 年: estie(不動産領域バーティカル SaaS) データ基盤エンジニアとして Snowflake や dbt の導⼊ 2024 年: IVRy(対話型⾳声AI SaaS) データアナリストとして⼊社 現在はアナリティクスエンジニアとして、 データ分析や各種データモデルの整備 ⾃⼰紹介 - 和⽥ 悠佑
toB ホリゾンタル SaaS 未経験の⾃分が感じた 今の IVRy での分析職の価値の発揮どころ 今⽇の LT テーマ
対話型⾳声AI SaaS「IVRy(アイブリー)」とは 最短5分‧⽉2,980円から電話業務を⾃動化‧効率化することができるサービスで、 ボタンプッシュによる⾃動応答/SMS返信/電話転送に加えて、AI⾳声対話など様々な機能が利⽤可能
IVRy の分析状況に対する印象 個別のお客さまに対する解像度が⾼いが 全体像が微妙に定まっていない • toC サービスと⽐べて ◦ セールス担当がお客さまとコミュニケーションをとるため、解像度が⾼い ▪
IVRy で解決したい課題や使い⽅について個社レベルで知っている • toB バーティカル SaaS と⽐べて ◦ プロダクトの使い⽅が多種多様で、全体像を掴むのが難しい ▪ 「⾃動応答がしたい」「電話番号が欲しい」「FAX を受けたい」……
IVRy の分析状況に対する印象 • 会社全体としては、お客さまについての情報の解像度が⾼い • 個別の情報⾃体は各メンバーに散っている ⾃分に蓄積された情報を拠り所に全体像について話そうとすると ⼈によって微妙に全体像がズレる (集計の how
もズレたりする)
例: ⾃動応答の設定内容の分類 ⾃動応答をどのように使っているのかを調査 • 案内の内容を、キーワードベースで分類 1. 案内内容を形態素解析 2. Word2Vec でグルーピング
3. 頻出キーワードをピックアップ 4. 利⽤率を集計
分類結果に対するリアクション 共通的な定義で、全体像を可視化してみると 「意外」というリアクションをもらうことが多い • 「SMS が⼀番多いの意外」 • 「意外と折り返し電話の需要あるんだな」 ⼈によって注⽬するポイントも異なる
「意外」をなくして、意思決定速度を上げる • 個社レベルでの解像度は⾼いので、データから意外な事実を得られることは少なめ ◦ Data チームが社内で最も課題に対する解像度が荒いまである • 各メンバーが個々⼈で積み上げてきている認識の⽅に意外がある ◦ 社員数もまだ増加中なので、認識をあわせる重要性も⾼まる
というわけで、データアナリストとして⼊社したものの、 今はアナリティクスエンジニアをやっています 「横断的に共通定義でデータを確認できる環境構築」のバリューが⾼そう! これまでのキャリアのデータ分析の知識を展開
We are Hiring! 今⽇話してない観点についても 発信していますので是⾮! (Note)