Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【輪講資料】Decoding Dense Embeddings: Sparse Autoenc...
Search
Yano
December 01, 2025
0
69
【輪講資料】Decoding Dense Embeddings: Sparse Autoencoders for Interpreting and Discretizing Dense Retrieval
研究室の輪講で利用した資料です。
論文リンク:
https://aclanthology.org/2025.emnlp-main.1345/
Yano
December 01, 2025
Tweet
Share
More Decks by Yano
See All by Yano
【輪講資料】Length-Induced Embedding Collapse in PLM-based Models
yano0
0
140
【輪講資料】How Do Large Language Models Acquire Factual Knowledge During Pretraining?
yano0
0
250
NLP2025参加報告
yano0
0
590
【輪講資料】ReAct: Synergizing Reasoning and Acting in Language Models / Tree of Thoughts: Deliberate Problem Solving with Large Language Models
yano0
0
210
【輪講資料】SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval
yano0
2
350
【輪講資料】From Zero to Hero: On the Limitations of Zero-Shot Language Transfer with Multilingual Transformers
yano0
0
100
【輪講資料】Zero-shot Cross-lingual Semantic Parsing
yano0
0
150
Featured
See All Featured
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
130
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
44k
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.3k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
82
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
The untapped power of vector embeddings
frankvandijk
1
1.5k
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
0
100
Transcript
Decoding Dense Embeddings: Sparse Autoencoders for Interpreting and Discretizing Dense
Retrieval 12݄2 ݚڀࣨɹD1 ઍߛ Seongwan Park, Taeklim Kim, Youngjoong Ko EMNLP 2025
֓ཁ 1. DPRϞσϧͷग़ྗʹSparse Auto encoderΛద༻͠ɺݕࡧʹར༻͞Ε͍ͯΔconcept Λಛఆ 2. ղऍՄೳʹ͢ΔͨΊɺڞ௨ͷconceptΛ࣋ͭจষ܈͔Β֤conceptͷઆ໌Λੜ 3. ղऍʹͬͨconcept܈ʹΑͬͯݕࡧΛߦ͏ɺConcept-Level
Sparse RetrievalΛఏ Ҋ • طଘͷૄີݕࡧख๏Ͱ͋ΔSPLADEͱಉఔͷੑೳͳ͕ΒΑΓޮత 2
બΜͩཧ༝ • Sparse Auto encoderΛͬͨղऍ݁ߏྲྀߦ͍ͬͯΔ͠ɺͦΕΛ ϕʔεʹ͍͍ײ͡ͷݕࡧϑϨʔϜϫʔΫΛ࡞͍ͬͯͯྑͦ͞͏ • ࣮ݧઃఆɺ܇࿅υϝΠϯͱҧ͏υϝΠϯͷσʔληοτͰධՁ ͢ΔͳͲɺׂͱͪΌΜͱͯͦ͠͏ 3
ಋೖɿDence Passage Retrieval • BERTͳͲͷํϞσϧΛར༻ͯ֫͠ಘͨ͠ΫΤϦͱจॻͷຒΊࠐΈ ͷྨࣅʹΑͬͯจॻݕࡧΛߦ͏ख๏ • TF-IDFBM25ͳͲͷૄͳख๏ͱҧ͍ɺ୯ޠද͕શʹҰக͍ͯ͠ͳ ͯ͘ݕࡧͰ͖Δ 4
ߴྨࣅ ྨࣅ ຊͰҰ൪ߴ͍ࢁʁ ࢜ࢁʢ;͡͞Μʣɺ ຊͷ׆ՐࢁͰ͋Δ… ৴ೱʢ͠ͳͷ͕Θʣɺ ৽ׁݝ͓ΑͼݝΛ… Ϟσϧ Ϟσϧ Ϟσϧ
Sparse Auto Encoder • த͕ؒૄʹͳΔΑ͏ͳ੍Λ͔͚ͯɺೖྗΛ࠶ߏங͢ΔΑ͏ʹ ֶशΛߦ͏ • ۙχϡʔϥϧωοτɺಛʹLLMͷղऍʹར༻͞Ε͍ͯΔ 5
Sparse Auto EncoderʹΑΔϞσϧղऍ • NNͰॏͶ߹Θ͕ͤى͖͓ͯΓɺಛఆͷχϡʔϩϯΛݟͯղऍΛߦ͏ͷ͍͠ • ୯Ұͷχϡʔϩϯ͕ෳͷ֓೦ʹൃՐ͢Δ • SAEʹΑͬͯNNͷதؒΛΑΓڊେͳ࣍ݩʹࣹӨ͠ɺ෦දݱ͕ଊ͑ΔใΛղ ऍ͢Δͱɺ࣮ࡍʹݸਓ໊ͷΈʹൃՐ͢Δಛྔɺࣈͷ”5”ʹͷΈൃՐ͢Δಛྔ
ͳͲ͕ൃݟ͞Εͨ* 6 <$VOOJOHIBNFUBM >4QBSTF"VUPFODPEFST'JOE)JHIMZ*OUFSQSFUBCMF'FBUVSFTJO-BOHVBHF.PEFMT ˝<$VOOJOHIBNFUBM >ΑΓҾ༻
DPRղऍʹ༻͍ΔSAE • ຊจͰDPRͷग़ྗʹSAEΛద༻͠ɺݕࡧʹར༻͢Δಛʹͭ ͍ͯղऍΛࢼΈΔ • 7 4"&ͷೖྗʢ%13ͷग़ྗʣ 4QBSTF-BUFOUT ΤϯίʔμͷॏΈͱόΠΞε߲
σίʔμͷॏΈͱόΠΞε߲ Ћ׆ੑԽؔ͜͜Ͱ#BUDI5PQ,Λར༻ h ∈ ℝd z ∈ ℝm(m > > d) Wenc ∈ ℝm*d benc ∈ ℝm Wden ∈ ℝd*m bdec ∈ ℝd SAEͷ෦දݱʢSparse LatentsʣΛ ૄʹ͢ΔͨΊͷ੍Ͱɺόον͝ͱʹ top kΑΓԼҐͷΛͯ͢0ʹ͢Δؔ ˛˞มҰக͍ͯ͠ͳ͍͕ɺΠϝʔδ
SAEͷ܇࿅ઃఆ • ରϞσϧ: SimML • ରσʔληοτ: MS-MARCOͷ܇࿅ηοτ • 8.8Mͷจॻͱ0.5MͷΫΤϦ •
SAEͰͷ࣍ݩͷ֦େʢm/dʣ: 32 • BatchTopKͷk: 32, 48, 64, 128 • ͻͱͭͷຒΊࠐΈΛදݱ͢ΔͨΊʹར༻Մೳͳ࣍ݩ • ࣮ࡍʹόον͝ͱʹbs x k࣍ݩ 8 SimLM E࣍ݩ N࣍ݩ E࣍ݩ ʜ 4"& &OD 4"& %FD ޡ͕ࠩখ͘͞ͳΔ Α͏ʹ܇࿅
SAEͷධՁ1: ࠶ߏஙͨ͠ϕΫτϧͷ࣭ • NMSE: DPRͷຒΊࠐΈͱ࠶ߏஙͨ͠ϕΫτϧͷޡࠩ • ฏۉతͳ׆ੑԽΛ༧ଌͨ͠߹ͷޡࠩͰׂͬͨͷ • MRR, Recall,
NDCG: ࠶ߏஙͨ͠ϕΫτϧʹΑΔݕࡧਫ਼ • Spearman: DPRͷຒΊࠐΈͱ࠶ߏஙͨ͠ϕΫτϧͷ૬ؔ • ୯७ͳݕࡧΑΓৄࡉͳRerankingೳྗΛ͔Δ 9
SAEͷධՁ1: ࠶ߏஙͨ͠ϕΫτϧͷ࣭ • NMSE: DPRͷຒΊࠐΈͱ࠶ߏஙͨ͠ϕΫτϧͷޡࠩ • ฏۉతͳ׆ੑԽΛ༧ଌͨ͠߹ͷޡࠩͰׂͬͨͷ • MRR, Recall,
NDCG: ࠶ߏஙͨ͠ϕΫτϧʹΑΔݕࡧਫ਼ • Spearman: DPRͷຒΊࠐΈͱ࠶ߏஙͨ͠ϕΫτϧͷ૬ؔ • ୯७ͳݕࡧΑΓৄࡉͳRerankingೳྗΛ͔Δ 10 Kେ͖ͨ͘͠ํ͕࠶ߏஙͷޡࠩԼ͕Γɺ ݕࡧͷੑೳ্͕Δ
SAEͷධՁ2: SAEͷજࡏදݱղऍՄೳͳ֓೦Λද͍ͯ͠Δ͔ʁ • ಛఆͷજࡏมΛ࠷ڧ͘׆ੑԽ͢Δจॻ9ͭͱɺ׆ੑԽ͠ͳ͍ จॻΛ·ͥͯɺLLMʹ֎ΕΛಛఆͤ͞Δ • જࡏม͕ݩͷจॻͷಛΛද͍ͯ͠Δ͔͔Δ • SparseͰͳ͘ͳΔ΄Ͳʢk͕େ͖͘ͳΔ΄Ͳʣݸʑͷજࡏม͕ ΅͚Δ
11
જࡏมͷઆ໌ੜ • ͦΕͧΕͷજࡏมΛ࠷ڧ͘׆ੑԽ͢Δจষ30݅ΛGpt4.1-mini ʹ༩͑ɺઆ໌Λੜ • ղऍΛ͘͢͢͠ΔͨΊʹɺActivation ValueʹIDFΛͯ͡ك ͳมͷΛେ͖͘ɺॏཁࢹ͞ΕΔΑ͏ʹ͍ͯ͠Δ 12 ˛જࡏมͷઆ໌
˛ݩจॻ
જࡏมͷઆ໌͔ΒਓؒϞσϧΛղऍͰ͖Δ͔ʁ • จॻ༧ଌɿજࡏมͷઆ໌܈ʹΑͬͯɺਓ͕ؒจॻ܈ʢ10݅ʣ͔Βରͷจ ॻʢ1݅ʣΛಛఆͰ͖Δ͔࣮ݧ • MS MARCO͔Β600݅ • ϦϥϯΩϯάɿΫΤϦͱީิจॻͷજࡏมͷઆ໌܈ʹΑͬͯɺਓ͕ؒϞσ ϧͱಉ༷ͷॱҐ͚ΛͰ͖Δ͔࣮ݧ
• 2ͭͷจॻͷ͏ͪɺͲͪΒ͕ߴॱҐ͔ΛબɻจॻϖΞҎԼͷ3ઃఆɿ • Retrieved Positive vs Retrieved Positive • Retrieved Positive vs Not Retrieved Positive • Retrieved Negative vs Not Retrieved Positive • TREC 2019ͱTREC 2020ͷσʔλΛར༻͠ɺTop 1000จॻΛRetrievedͱఆٛ 13
જࡏมͷઆ໌͔ΒਓؒϞσϧΛղऍͰ͖Δ͔ʁ • ৗʹ9ׂҎ্ͷਫ਼Ͱɺજࡏมͱͦͷઆ໌Ϟσϧͷ༧ଌΛγ ϛϡϨʔγϣϯ͢ΔͨΊʹཱͭ 14
જࡏมͷઆ໌͔ΒਓؒϞσϧΛղऍͰ͖Δ͔ʁ • ৗʹ9ׂҎ্ͷਫ਼Ͱɺજࡏมͱͦͷઆ໌Ϟσϧͷ༧ଌΛγ ϛϡϨʔγϣϯ͢ΔͨΊʹཱͭ 15 Ϟσϧ͕ؒҧ͑ͨྫʹ͍ͭͯϞσϧ༧ଌΛ γϛϡϨʔτͰ͖͍ͯΔ -> ͳΜͰؒҧ͔͑ͨʁͱ͔Θ͔Γͦ͏ʁ
Concept-Level Sparse RetrievalͷఏҊ • ͜͜·Ͱͷํ๏Λ֦ு͠ɺજࡏมΛͬͨݕࡧख๏ΛఏҊ͢Δ • ΫΤϦͱจॻͷؒͷݕࡧείΞҎԼͰఆٛ • BM25ͷܭࢉࣜΛϕʔεʹิਖ਼Λಋೖ •
ݕࡧసΠϯσοΫεΛར༻͢Δ͜ͱͰߴ • ࣄલʹจॻΛΤϯίʔυ -> જࡏม͕keyͱͳΔసஔΠϯσοΫεΛ ࡞ 16 ΫΤϦRʹ͓͚ΔજࡏมJͷॏΈ จॻEʹ͓͚ΔજࡏมJͷॏΈ *%'ʹΑΔJͷॏΈ fq (q, i) fd (d, i) JEG(i) R
Concept-Level Sparse RetrievalͷఏҊ • ͜͜·Ͱͷํ๏Λ֦ு͠ɺજࡏมΛͬͨݕࡧख๏ΛఏҊ͢Δ • ΫΤϦͱจॻͷؒͷݕࡧείΞҎԼͰఆٛ • BM25ͷܭࢉࣜΛϕʔεʹิਖ਼Λಋೖ •
ݕࡧసΠϯσοΫεΛར༻͢Δ͜ͱͰߴ • ࣄલʹจॻΛΤϯίʔυ -> જࡏม͕keyͱͳΔసஔΠϯσοΫεΛ ࡞ 17 ΫΤϦRʹ͓͚ΔજࡏมJͷॏΈ จॻEʹ͓͚ΔજࡏมJͷॏΈ *%'ʹΑΔJͷॏΈ fq (q, i) fd (d, i) JEG(i) R ݕࡧ෦ߴ͕ͩɺݕࡧ࣌ʹΫΤϦΛ DPRͰΤϯίʔυ͢Δඞཁ͕͋Δ
ൺֱख๏ • Sparse Retrieval: ୯ޠͷ౷ܭใΛݩʹͨ͠ߴͳख๏ • BM25: จॻதͷ୯ޠසʹجͮ͘ख๏ • RM3:
্ҐจॻΛར༻ͯ͠ΫΤϦ֦ுΛߦ͏BM25ͷޙଓख๏ • docT5query: T5ʹΑͬͯจॻ͔Βఆ࣭Λ࡞͠BM25Λߦ͏ • Neural Sparse Retrieval: ਪ࣌ʹχϡʔϥϧωοτΛΈ߹Θͤͨख๏ • query2doc: LLMͰΫΤϦ͔ΒจॻΛੜ͠ΫΤϦʹՃ • DeepImpact: ୯ޠͷॏཁੑͱͯ͠ग़ݱճͰͳ͘BERTͷ༧ଌΛ͏ • uniCOIL: BERTʹΑΔຒΊࠐΈΛ1࣍ݩʹѹॖ͠సΠϯσοΫεΛ͏ • SPLADE: BERTΛͬͯจॻʹؚ·ΕΔ୯ޠͷॏΈ͚ͮͱؔ࿈ޠͷՃΛߦ͏ 18
ܭࢉޮΛଌΔࢦඪ • FLOPs: ΫΤϦͱจॻϖΞ͝ͱͷԋࢉͷظ • D Len: จॻ͝ͱͷฏۉಛྔ • CL-SRͰજࡏมͷɻBM25Ͱ୯ޠɺSPLADEͰ୯ޠ+
ؔ࿈ޠ • Vocab Size: ΠϯσοΫε͞Ε͍ͯΔIDͷେ͖͞ • CL-SRͰར༻͞ΕΔજࡏมͷɻBM25Ͱར༻͞ΕΔτʔΫ ϯͷछྨɺSPLADEͰར༻͞ΕΔϞσϧͷvocab size… 19
ෳͷݕࡧσʔληοτʹΑΔධՁ • CL-SRNeural Sparse RetrievalͱಉͷੑೳΛࣔ͠ͳ͕Βߴ͍ ܭࢉޮΛࣔ͢ 20 L L
CL-SRදʹͱΒΘΕͣݕࡧ͕Ͱ͖Δ͔ʁ • MS MARCOதͷBM25͕ؒҧ͑ͨΫΤϦɺ988݅Ͱͷ࣮ݧ • දϕʔεͷݕࡧ͔͠ߦ͑ͳ͍߹ɺ͜ͷσʔληοτͰੑೳ ͕ൃشͰ͖ͳ͍ • SPLADEΑΓੑೳ͕ߴ͘ɺજࡏมޠኮͱҙຯͷΪϟοϓΛ ຒΊΒΕ͍ͯΔ
21
BM25͕ղ͚ͣɺCL-SR͕ղ͚ͨ۩ମྫ1 • ΫΤϦͱਖ਼ղจॻʹ୯ޠͷॏෳ͕গͳ͘ɺBM25Ͱ͍͠ • CL-SRਖ਼ղจॻ͔ΒදʹͱΒΘΕͳ͍֓೦Λ֫ಘ͠ޭ 22 ࢠٶͷղֶͱ݈߁ ͱൃୡ
BM25͕ղ͚ͣɺCL-SR͕ղ͚ͨ۩ମྫ2 • ଟٛޠʢfallʣΛBM25Ͱ্ख͘ѻ͑ͳ͍ • CL-SRͰʮ”fall”ͷଟٛੑʯʮقઅʯͳͲͷෳͷજࡏมʹ ҙຯΛࢄͤ͞ޭ 23 fallʢམͪΔʣ͕ෳ ొ͢Δจॻ͕ώοτ “fall”ͷଟ༷ͳҙຯ
قઅͷΞΠσϯςΟςΟ
Appendix: ܇࿅ʹར༻͍ͯ͠ͳ͍υϝΠϯͰͷධՁ • SAEͷ܇࿅࣌ͱҟͳΔυϝΠϯͰɺ࠶ߏங͞ΕͨϕΫτϧ࣭Λ ධՁ 24 ˛JOEPNBJOσʔλͰͷධՁʢ53&$.4."3$0͔ΒΓग़ͨ͠σʔλʣ ˛PVUPGEPNBJOσʔλͰͷධՁʢ.4."3$0Ͱ܇࿅ʣ
Appendix: ܇࿅ʹར༻͍ͯ͠ͳ͍υϝΠϯͰͷධՁ • SAEͷ܇࿅࣌ͱҟͳΔυϝΠϯͰɺ࠶ߏங͞ΕͨϕΫτϧ࣭Λ ධՁ 25 ˛JOEPNBJOσʔλͰͷධՁʢ53&$.4."3$0͔ΒΓग़ͨ͠σʔλʣ ˛PVUPGEPNBJOσʔλͰͷධՁʢ.4."3$0Ͱ܇࿅ʣ SpearmanͳͲͪΐͬͱ͍ ͷͷɺ͋ΔఔͰ͖͍ͯͦ͏
·ͱΊ • DPRͷग़ྗΛSAEΛ༻͍ͯղऍ͠ɺਓखධՁަ͑ͳ͕ΒɺSAE ʹΑͬͯ֫ಘͨ͠જࡏ֓೦͕ղऍՄೳͳҙຯͷ୯Ґͱͯ͠ػೳ͠ ͍ͯΔ͜ͱΛࣔͨ͠ • જࡏ֓೦͕sparseͰ͋Δ͜ͱ͔ΒɺసΠϯσοΫεΛ༻͍ͨߴ ͳݕࡧख๏Concept-Level Sparse Retrieval
(CL-SR)ΛఏҊ • ैདྷख๏ʹඖఢ͢Δੑೳ͔ͭɺΑΓޮత 26