Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2019-7-19-data_ml_engineering
Search
yudeayase
July 19, 2019
Programming
0
760
2019-7-19-data_ml_engineering
yudeayase
July 19, 2019
Tweet
Share
Other Decks in Programming
See All in Programming
AtCoder Conference 2025
shindannin
0
1.1k
コントリビューターによるDenoのすゝめ / Deno Recommendations by a Contributor
petamoriken
0
200
Raku Raku Notion 20260128
hareyakayuruyaka
0
180
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
2.5k
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.6k
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
570
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
200
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
Package Management Learnings from Homebrew
mikemcquaid
0
220
AIと一緒にレガシーに向き合ってみた
nyafunta9858
0
240
CSC307 Lecture 04
javiergs
PRO
0
660
AI & Enginnering
codelynx
0
110
Featured
See All Featured
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
180
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
120
The Limits of Empathy - UXLibs8
cassininazir
1
210
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
210
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
67
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
440
The Cult of Friendly URLs
andyhume
79
6.8k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
Transcript
Google Cloud ML Engine に浸かってみる @yudeayase
真の題名
フルマネージドで 楽したい! @yudeayase
機械学習予測側のお話
予測サーバーの運用を 楽にしようと思いました
何を作っていたのか? - 機械学習を使った広告効果の予測用API - 予測用のパラメーターをインプットとして予測値を返す - なるべくわかりやすいインターフェース - リクエストが数字の羅列とかしんどいよね
Our System 作っていた機械学習API Flask on GKE 予測モデル on ML Engine
Clients サービスのバックエンド or フロントエンドなど…
Our System 作っていた機械学習API Flask on GKE 予測モデル on ML Engine
Clients サービスのバックエンド or フロントエンドなど… 前処理 & 予測値整形
Our System 作っていた機械学習API Flask on GKE 予測モデル on ML Engine
Clients サービスのバックエンド or フロントエンドなど… 予測を実際に行うAPI
What is ML Engine? モデルの学習からそれを用いた予測サーバーを1サービスで構築可能
What is ML Engine? - モデルの学習からデプロイまで可能 - デプロイしたモデルですぐにオンライン予測可能 - モデルが重い場合がバッチ予測もできる
ん?
What is ML Engine? - モデルの学習からデプロイまで可能 - デプロイしたモデルですぐにオンライン予測可能 - モデルが重い場合がバッチ予測もできる
None
フルマネージドサーバーレス環境
Our System 作っていた機械学習API Flask on GKE 予測モデル on ML Engine
Clients サービスのバックエンド or フロントエンドなど… こいつの面倒は みないといけない!
前処理という業〜カルマ〜 { “年齢”: 34, “性別”: 男, “媒体”: “Twitter”, “画像”: base64...
... } { “年齢”: [0, 0, 1, 0, 0, 0, 0], “性別”: [1, 0], “媒体”: [1, 0 ,0, 0], “画像”: [[255.0, 255.0, ...]] ... } モデルへ
前処理という業〜カルマ〜 モデルへ この変換をFlaskアプリケーションが担う { “年齢”: 34, “性別”: 男, “媒体”: “Twitter”,
“画像”: base64... ... } { “年齢”: [0, 0, 1, 0, 0, 0, 0], “性別”: [1, 0], “媒体”: [1, 0 ,0, 0], “画像”: [[255.0, 255.0, ...]] ... }
前処理という業〜カルマ〜 モデルへ この変換をFlaskアプリケーションが担う ほとんどこのために1アプリケーション構築している { “年齢”: 34, “性別”: 男, “媒体”:
“Twitter”, “画像”: base64... ... } { “年齢”: [0, 0, 1, 0, 0, 0, 0], “性別”: [1, 0], “媒体”: [1, 0 ,0, 0], “画像”: [[255.0, 255.0, ...]] ... }
Our System 作っていた機械学習API Flask on GKE 予測モデル on ML Engine
Clients サービスのバックエンド or フロントエンドなど… こいつの世話分、 損してない?
せっかくのマネージドサービスを 使い倒してなくない?
どうすればいいのか?
前処理を含めて「モデル」をつくる 前処理 予測モデル
前処理を含めて「モデル」をつくる 前処理 予測モデル
実際できるの?
カテゴリ値の”翻訳” { “年齢”: 34, “性別”: 男, “媒体”: “Twitter”, ... }
{ “年齢”: [0, 0, 1, 0, 0, 0, 0], “性別”: [1, 0], “媒体”: [1, 0 ,0, 0], ... } 人間の読めるものから、モデルの読めるものへの変換 One-hot or Multi-hot encoding
Feature columns
くわしくは https://www.tensorflow.org/guide/feature_columns
画像の”翻訳” { “画像”: base64... ... } { “画像”: [[255.0, 255.0,
...]] ... } JSONで画像情報の実態を送る場合base64でエンコードを送ることがある デコード & 数値化が必須
モデルのserving input
モデルのserving input 学習済みモデル serving input - 画像のデコード - 画像の数値化 -
正規化 固めてML Engineに乗せられるモデルを出力
All in one model 学習済みモデル 数値input エンコーディングinput 画像input
Our System フルマネージド機械学習API Flask on GKE 予測モデル on ML Engine
Clients サービスのバックエンド or フロントエンドなど…
Our System フルマネージド機械学習API 予測モデル on ML Engine Clients サービスのバックエンド or
フロントエンドなど…
世話をするモジュールが減った!
Happy!
本当にハッピーなのか? - モデルにくっつける演算はTensorFlowにベタベタ - ML Engineに依存ベタベタ - AWS SageMakerもある -
GCPに依存しまくってていいのかの判断 - TensorFlow2.0 - 朗報はKerasでもfeature columnsが使える - Serving inputは確実に変更が必要
Thank you !