Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DenoでもBunでもいいから 最速を目指す
Search
Yusuke Wada
September 05, 2022
Programming
3
1.7k
DenoでもBunでもいいから 最速を目指す
Yusuke Wada a.k.a yusukebe
2022/09/05 Node学園 40時限目
Yusuke Wada
September 05, 2022
Tweet
Share
More Decks by Yusuke Wada
See All by Yusuke Wada
Cap'n Webについて
yusukebe
0
160
OSS開発者の憂鬱
yusukebe
16
16k
r2-image-worker
yusukebe
1
200
Introduce Hono CLI
yusukebe
6
3.7k
私はどうやって技術力を上げたのか
yusukebe
46
21k
Reactをクライアントで使わない
yusukebe
8
6.9k
AI時代のUIはどこへ行く?
yusukebe
23
12k
速いWebフレームワークを作る
yusukebe
5
1.9k
Honoアップデート 2025年夏
yusukebe
1
1.1k
Other Decks in Programming
See All in Programming
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
310
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
6
1.7k
[AtCoder Conference 2025] LLMを使った業務AHCの上⼿な解き⽅
terryu16
6
1k
PostgreSQLで手軽にDuckDBを使う!DuckDB&pg_duckdb入門/osc25hi-duckdb
takahashiikki
0
230
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.4k
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
210
まだ間に合う!Claude Code元年をふりかえる
nogu66
5
920
Combinatorial Interview Problems with Backtracking Solutions - From Imperative Procedural Programming to Declarative Functional Programming - Part 2
philipschwarz
PRO
0
130
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
2k
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
130
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.5k
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
200
Featured
See All Featured
Mind Mapping
helmedeiros
PRO
0
45
How to Ace a Technical Interview
jacobian
281
24k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
590
From π to Pie charts
rasagy
0
100
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
530
Designing for Timeless Needs
cassininazir
0
110
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
51k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Transcript
%FOPͰ#VOͰ͍͍͔Β ࠷Λࢦ͢ :VTVLF8BEBBLBZVTVLFCF /PEFֶԂ࣌ݶ
ࣗݾհ w :VTVLF8BEBBLBZVTVLFCF w ϘέͯDPGPVOEFS w :"1$"TJBϕεττʔΫड w גࣜձࣾτϥϕϧϒοΫ
εʔύʔόΠβʔ w UXJUUFSDPNZVTVLFCF w HJUIVCDPNZVTVLFCF /PEFֶԂॳࢀՃͰ͢
)POPͱ͍͏ϑϨʔϜϫʔΫΛ͍ͭͬͯ͘·͢ w 8FCϑϨʔϜϫʔΫɾϧʔλʔ w 8FC4UBOEBSE'FUDIͷ"1*ͷΈΛ༻ w ϚϧνϓϥοτϑΥʔϜ w $MPVE fl
BSF8PSLFSTɺ'BTUMZ$PNQVUF!&EHFɺ%FOPɺ#VO w ϛυϧΣΞͰػೳՃ w 5SJF3PVUFS EFGBVMU ͱ3FH&YQ3PVUFSͷͭͷϧʔλʔ͕͋Δ IUUQTIPOPKTEFW
)POPͷͭͷϧʔλʔ w 5SJF3PVUFS w 3FH&YQ3PVUFSCZ!VTVBMPNB w +4ͷΣϒϑϨʔϜϫʔΫͰߴͳϧʔλʔΛ࣮͢Δํ๏ 4QFBLFS%FDL w IUUQTTQFBLFSEFDLDPNVTVBMPNBVMUSBGBTUKTSPVUFS
6MUSBGBTU ͱʹ͔͍͘ϑϨʔϜϫʔΫΛࢦ͍ͯ͠Δ
%FOPɺ#VO w #VO w #VOJTBGBTUBMMJOPOF+BWB4DSJQUSVOUJNF IUUQTCVOTI w %FOP w
0VSHPBMJTUPNBLF%FOPUIFGBTUFTU+BWB4DSJQUSVOUJNF IUUQTEFOPDPNCMPHDIBOHFT )POPͲͪΒͰಈ͘ͷͰ %FOPͰ#VOͰͲ͜Ͱಈ͔͍͍͔ͯ͠Β Ұ൪͍ϑϨʔϜϫʔΫΛࢦͯ͠ΈΑ͏
8FCϑϨʔϜϫʔΫ͕͍ͱʁ
͍͍ͩͨ͜ͷͭΛଌΔ w )FMMP8PSME w ϧʔςΟϯά w 3FRVFTU3FTQPOTFͷॲཧ EFMWFEPSSPVUFSCFODINBSL 4BMUZ"PNCVOIUUQGSBNFXPSLCFODINBSL
طଘϕϯνϚʔΫPSΦϦδφϧ ͰଌͬͯΈΑ͏ .BD#PPL1SP.DPSF(#
%FOPɺ#VOͷલʹ/PEF
/PEFϧʔλʔฤ w EFMWFEPSSPVUFSCFODINBSL#FODINBSLPGUIFNPTUDPNNPOMZ VTFEIUUQSPVUFST IUUQTHJUIVCDPNEFMWFEPSSPVUFSCFODINBSL w /PEFͷओཁʮϧʔλʔʯͷϕϯνϚʔΫ w &YQSFTT
w LPBSPVUFS w LPBUSFFSPVUFS w fi OENZXBZ'BTUJGZͰΘΕ͍ͯΔ w USFLSPVUFS w FUD )POPͷݸΛ͋Θͤͯݸͷϧʔλʔ
Γํ ϧʔςΟϯάఆٛ ୟ͖ํ ͋͘·ͰϧʔςΟϯά 3FR3FTͷϋϯυϦϯά͠ͳ͍
݁Ռͦͷ Ґ Ґ
݁Ռ্Ґ Ґ Ґ Ґ
)POP Ґ Ґ ˎͪͳΈʹ)POPͷϧʔλʔෳͷϋϯυϥʹରԠͤͨ͞Γ ϓϥΠΦϦςΟ͕ෳࡶͩͬͨΓ͢Δ
ͪͳΈʹ#VOͩͱ
)POP3FH&YQ3PVUFS͕উͭ #VOͷਖ਼نදݱ͕͍ /PEFΑΓ͘ͳͬͯΔͷ ͳʹ͔ཧ༝͕͋Δͷ͔ͳ͍ͷ͔
͍Α͍Α%FOP
%FOP)FMMP8PSMEฤ w EFOPTBVSTCFODI📊$PNQBSJOHEFOPOPEF)551 GSBNFXPSLT IUUQTHJUIVCDPNEFOPTBVSTCFODI w %FOPɺ/PEFͷϑϨʔϜϫʔΫΛܭଌ ૉͷ#VO w
)FMMP8PSMEΛBVUPDBOOPOͰଌΔ w (JU)VC"DUJPOTͰճɺ݁Ռ͕3&"%.&ʹͳΔ
݁Ռ ϑϨʔϜϫʔΫͷதͰҰ൪͍ #VOׂ͕ͱ͍ʁ
+BSSFEొ IUUQTHJUIVCDPNEFOPTBVSTCFODIJTTVFT
BVUPDBOOPO͍͔ΒPIB͑ ࠷ۙ#PNCBEJFS͕͓ؾʹೖΓΒ͍͠
Ͱɺ࣮ʜ
%FOPϕϯνϚʔΫ w ࣮)POP%FOPެࣜϕϯνϚʔΫͰΘΕ͍ͯΔ w IUUQTEFOPMBOECFODINBSLT
None
%FOP fl BTI w %FOPΑΓ࣮ݧతʹಋೖ͞Εͨ)551TFSWFS"1* YJNQSPWFNFOUDPNQBSFEUPPVSFYJTUJOHXFCTFSWFS
w ͔֬ʹ%FOP fl BTI#VOΑΓ͍ w ͨͩ͠ɺ͜͜ͰΘΕ͍ͯΔ#VOͷ όʔδϣϯݹ͍ʢͣʣ
%JWZ͘Μ͕%FOP fl BTIͷϕϯνʹ)POPΛͬͯ͘Εͨ HJUIVCDPNEFOPMBOEEFOPQVMM
+BSSFEݱΔ IUUQTHJUIVCDPNEFOPMBOEEFOPQVMMJTTVFDPNNFOU
Ͱ#VOฤ
#VO)551ϑϨʔϜϫʔΫϕϯν w 4BMUZ"PNCVOIUUQGSBNFXPSLCFODINBSL$PNQBSFUISPVHIQVU CFODINBSLGSPNWBSJPVT#VO)551GSBNFXPSL IUUQTHJUIVCDPN4BMUZ"PNCVOIUUQGSBNFXPSLCFODINBSL
(FU 1BSBNT RVFSZIFBEFS 1PTU+40/
#VO ,JOH8PSMEͬ Ͱ1PTU+40/ͦΜͳͰͳ͍ʁ
1PTU+40/ w BXBJUBTZODΛ͏ͱ,JOH8PSMEͷύϑΥʔϚϯεམͪΔ w (&5 ͳͲಉظత w )POP ࣌
શͯͷϋϯυϥͰBXBJU͢Δॲཧ͕ೖ͍ͬͯͨ BTZODϋϯυϥͷαϙʔτ BXBJU͢Δॲཧ͕શϋϯυϥʹରͯ͠ߦΘΕ͍ͯͨ 1PTU+40/
BXBJUΛ͏ͱ͍ IUUQTHJUIVCDPNPWFOTICVOJTTVFT
+BSSFEొ IUUQTHJUIVCDPNPWFOTICVOJTTVFTJTTVFDPNNFOU 5IFSFJTTUJMMNPSFXPSLUPCFEPOF UPSFEVDF#VOTQSPNJTFBXBJUPWFSIFBE
WͰվળ ͨͩ͠ ˎ5IFNPSFHFOFSBMDBTFPGBTZODBXBJUQFSGPSNBODFCFJOHXPSTFJO+4$UIBO7JTTUJMMBOJTTVF
#VODBOBSZ ݈ಆͯ͠Δ
+BSSFEͷΞυόΠε ˎW͕ग़ΔલͰ͕͢ʜ
ϋϯυϥ͕Ұͭͷ߹DPNQPTF͠ͳ͍Α͏ʹͨ͠ IUUQTHJUIVCDPNIPOPKTIPOPQVMM
ABXBJUAΛগͳͨ͘͠ IUUQTHJUIVCDPNIPOPKTIPOPQVMM
#VOWDBOBSZ )POP "dependencies": { "@kapson fi re/bun-bakery": "^0.3.2", "@nbit/bun":
"^0.7.0", "baojs": "^0.1.3", "bunrest": "^1.1.0", "colstonjs": "latest", "express": "^4.18.1", "hyperbun": "^0.4.6", "kingworld": "^0.0.0-experimental.24" } )POP͍ͧ
࠷৽൛ #VOWDBOBSZ )POPIUUQTHJUIVCDPNIPOPKTIPOPUSFF FCFCDDGEDGCC "dependencies": { "@kapson fi re/bun-bakery": "^0.3.2",
"express": "^4.18.1", "fastify": "^4.5.3", "hyperbun": "^0.4.6", "kingworld": "^0.0.0-experimental.24" },
࠷৽ͷ݁Ռ IUUQTHJUIVCDPNZVTVLFCFXFCGSBNFXPSLCFODI
ͱ͍͏͜ͱͰ%FOPͰ#VOͰ ϑϨʔϜϫʔΫͷதͰ ˚Ұ൪͍ ⦿ҰೋΛ૪͏
͍ͬͨΜײ w ύϑΥʔϚϯεΛͱΔ͔ϝϯςφϏϦςΟΛͱΔ͔ʁ w 6MUSBGBTUΛΞΠσϯςΟςΟʹͯ͠ΔͷͰͳΔ͘͘ w ػೳ͋ΔͷͰ࠷େม w ϕϯνϚʔΫʮͳ·ͷʯ w
ϕϯνϚʔΫ͍͠ w ڥɺϥϯλΠϜͷ࣮ w #VOͷϨεϙϯεϔομʹA%BUFAϔομ͕ͳ͍FUD w ఢΛ࡞ΔՄೳੑ͕͋Δ
%FOP্ͱ#VO্ͳΒͲͪΒ͕͍ͷ͔ʁ %FOP fl BTI͍ #VO৽͍͠)POPͩͱ͍
ࡢڭ͑ͯΒͬͨϕϯνϚʔΫαΠτ IUUQTEFOPWTCVO fl ZEFW %FOP fl BTIͬͯͳ͍
#VOͰ੩తϑΝΠϧͷαʔϒΛ࠷దԽ͠Α ͏ͱ͍ͯ͠Δ
#VOͬͱ͘ͳΔ
ͪͳΈʹ%&-&5&͚ͩ3FRVFTUͷத ͕ۭʹͳΔόά͕͋Δ IUUQTHJUIVCDPNPWFOTICVOJTTVFT IUUQTHJUIVCDPNIPOPKTIPOPJTTVFT
%FOP
·ͩ͘ͳΔ
63-͕͍
͏*TTVFʹͳͬͯͨ IUUQTHJUIVCDPNEFOPMBOEEFOPJTTVFT
63-͡Όͳͯ͘ 63-4FBSDI1BSBNT͚ͩͰΑ͘ͳ͍ʁ
DSFRRVFSZͷߴԽ IUUQTHJUIVCDPNIPOPKTIPOPQVMM
Ҏ্ύϑΥʔϚϯε্͕ͬͨ IUUQTHJTUHJUIVCDPNZVTVLFCFGFEGEFFDEGE
ߴԽͱϕϯνϚʔΫ ଓ͍͍ͯ͘ʜ