Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ヒューマンコンピュテーション(2019年度「人工知能」第3回)/ Human Computat...

ヒューマンコンピュテーション(2019年度「人工知能」第3回)/ Human Computation (GB20301)

Transcript

  1. / 30 ώϡʔϚϯίϯϐϡςʔγϣϯͷྫᶃɿSF$"15$)" ਖ਼ղط஌ͷ໰୊ΛࠞͥΔ͜ͱͰෆਅ໘໨ͳਓΛআ֎͢Δ ᶃਓ͔ؒϘοτ͔ͷ൑ఆɹᶄॻ੶ͷจࣈೝࣝ SF$"15$)"ͷ໨త Type the word Type

    the word reCAPTCHA ೋͭͷจࣈΛೝࣝ͢ΔΑ͏ʹࢦࣔ͢Δ ˞ͲͪΒ͕ਖ਼ղط஌͔͸఻͑ͳ͍ ᶃɹਖ਼ղͳΒˠਓؒ
 ɹෆਖ਼ղͳΒˠϘοτ ᶄʮਓؒʯͷ݁Ռ͚ͩΛ
 ɹೝࣝ݁Ռͱͯ͠࠾༻ ਖ਼ղط஌ ਖ਼ղະ஌ 5
  2. / 30 ώϡʔϚϯίϯϐϡςʔγϣϯͷྫᶄɿ7J[8J[ ࢹ֮ো͕͍ऀͷ࣭໰Ԡ౴γεςϜʹਓؒΛ૊ΈࠐΉ  -tap to take a photo.

     -tap to begin recording your question and again to stop.        side,     User     ? Database - Local Client Remote Services and Worker Interface 4UFQϢʔβ͕࣭໰Λ౤ߘ 4UFQγεςϜ಺෦ͷਓ͕ؒճ౴ ίʔϯͷ؈͸ͲΕʁ Ұ൪ӈͷ؈Ͱ͢ 7 J. Bigham et al.: VizWiz: Nearly real-time answers to visual questions, In UIST, 2010.
  3. / 30 Ϋϥ΢υιʔγϯά w ۚમใु͸൚༻తͳखஈ w ΠϯλʔωοτΛ௨ͯ͡ෆಛఆଟ਺ͷਓʑʹ࡞ۀΛൃ஫͢Δ࢓૊Έ
 ʮΫϥ΢υιʔγϯάʯʹΑΓ͓ۚΛࢧ෷͍ࢀՃऀΛूΊΔ͜ͱ͕Ͱ͖Δ ⿞Ϋϥ΢υιʔγϯάͷྫɿ"NB[PO.FDIBOJDBM5VSL ϥϯαʔζ

    w 7J[8J[͸Ϋϥ΢υιʔγϯάΛ༻͍ͯࢀՃऀΛ֬อ ෆಛఆଟ਺ͷਓʹใुΛ෷͍࡞ۀΛґཔ Ϋϥ΢υιʔγϯά ࡞ۀΛൃ஫ අ༻Λࢧ෷͏ ࡞ۀΛड஫ ใुΛ੥ٻ 8
  4. / 30 ฒྻ໰߹ͤ ผʑʹղ͔ͤͯ౴͑Λ·ͱΊΔ 12 ࣸਅʹௗ͕ࣸͬͯ·͔͢ʁ :&4 /0 YES NO

    YES ଟ਺ܾͷ݁Ռ͸YES ࣸਅʹௗ͕ࣸͬͯ·͔͢ʁ :&4 /0 YES YES NO ଟ਺ܾͷ݁Ռ͸YES w ৴པੑ޲্ͷͨΊ
 ৴པͰ͖Δਓʹߴ͍ॏΈΛ༩͍͑ͨ w ୯७ͳํ๏͸ଟ਺ܾɿ
 ಉ࣭͡໰Λෳ਺ਓʹ໰͍߹Θͤ
 ճ౴Λ౷߹͢Δ
  5. / 30 ౷ܭతճ౴౷߹ɿճ౴ऀͷ৴པੑΛߟྀ w ճ౴͔Β֤ࣗͷ৴པੑΛਪఆ্ͨ͠Ͱ֤໰୊ͷਖ਼ղΛ༧ଌ͢Δ w ੜెͷճ౴͚͔ͩΒࢼݧͷਖ਼ղΛ༧ଌ͢ΔΑ͏ͳ΋ͷ ճ౴͔Β֤ࣗͷ৴པੑΛ౷ܭతʹਪఆ͢Δ 13 YES

    YES YES YES NO YES NO YES YES YES YES NO ? ? ? ਖ਼ղ ໰୊ A. P. Dawid and A. M. Skene: Maximum likelihood estimation of observer error-rates using the EM algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979.
  6. / 30 ౷ܭతճ౴౷߹ɿճ౴ऀͷ৴པੑΛߟྀ ճ౴ͷੜ੒ϞσϧΛ༻͍ճ౴ऀͷ৴པੑͱਖ਼ղΛಉ࣌ʹਪఆ 14 ɿճ౴ऀ ͕ਖ਼ղ͕YES ͷ໰୊ʹYES ͱ౴͑Δ֬཰ θj

    j ɿճ౴ऀ ͕ਖ਼ղ͕NO ͷ໰୊ʹNO ͱ౴͑Δ֬཰ λj j ti ਖ਼ղ
 :&4PS/0 YES ti = NO ti = yij θj λj ճ౴ऀͷ৴པੑύϥϝʔλ ճ౴ͷੜ੒Ϟσϧʢ໰୊Jʹର͢Δճ౴ऀKͷճ౴ʣ ੜ੒Ϟσϧʹج͖ͮ
 ճ౴σʔλ͔Β֤ࣗͷ৴པੑ ͱ֤໰୊ͷਖ਼ղΛਪఆ͢Δ ճ౴
 :&4PS/0
  7. / 30 ౷ܭతճ౴౷߹ɿճ౴ऀͷ֬৴౓Λߟྀ w ճ౴ऀʹ֬৴౓΋ฉ͘ w ֬৴౓ͷߴ͍ਓ΄Ͳೳྗ͕ߴͦ͏͕ͩ֬৴౓Λਖ਼͘͠౴͑Δอূ͸ͳ͍ ⿞ޡ౴ͳͷʹʮࣗ৴͕͋Δʯͱ౴͑Δਓ͕͍Δʢࣗ৴ա৒ʣ ⿞ਖ਼౴ͳͷʹʮࣗ৴͕ͳ͍ʯͱ౴͑Δਓ͕͍Δʢࣗ৴աখʣ w

    ֬৴౓ͷճ౴܏޲΋ߟྀͯ͠ճ౴ऀͷ৴པੑͱਖ਼ղΛ༧ଌ͢Δ ճ౴ऀʹ֬৴౓΋ฉ͍ͯਖ਼ղ༧ଌʹ༻͍Δ 15  ΦʔετϥϦΞͷट౎͸γυχʔͰ͔͢ʁ
  ճ౴ʹࣗ৴͕͋Γ·͔͢ʁ ͸͍ ͍͍͑ ͸͍ ͍͍͑ S. Oyama, Y. Baba, Y. Sakurai, and H, Kashima: Accurate integration of crowdsourced labels using workers' self-reported confidence scores, In IJCAI, 2013.
  8. / 30 ௚ྻ໰߹ͤ w ଞਓͷ౴͑Λ࢖͍ղ͔ͤΔ͜ͱͰਖ਼͍͠౴͑ΛҾ͖ग़͢ͷ͕௚ྻ໰߹ͤ w 'JOE'JY7FSJGZͷ̏ஈ֊Ͱจॻதͷ໰୊ͷ͋ΔՕॴΛݕग़͠ߍਖ਼Λߦ͏ ⿞'JOE໰୊ͷ͋ΔՕॴͷݕग़ ⿞'JYߍਖ਼ͷ࣮ࢪ ⿞7FSJGZߍਖ਼͕ਖ਼͍͔֬͠ೝ

    ଞਓͷ౴͑Λ࢖ͬͯղ͔ͤΔ 17 Figure 2. Crowdproof is a human-augmented proofreader. The drop-down explains the problem (blue title) and suggests Find Fix Verify J. Bigham et al.: Soylent: A word processor with a crowd inside, In UIST, 2010.
  9. / 30 ࣗݾగਖ਼ w 4UFQԿ΋ݟͤͣʹճ౴ͤ͞Δ
 
 
 
 w 4UFQଞͷճ౴ऀͷଟ਺ܾ݁ՌΛఏࣔ͠࠶౓ճ౴ͤ͞Δ

    ଞਓͷ౴͑Λఏࣔ͠గਖ਼Λଅ͢ 18 αϯϑϥϯγείͷࣸਅΛબΜͰ͍ͩ͘͞ ͋ͳͨͷճ౴ ଟ਺ܾ݁Ռ ͋ͳͨͷճ౴͕ؒҧ͍ͬͯΔͱࢥ͏৔߹͸గਖ਼͍ͯͩ͘͠͞ N. B. Shah and D. Zhou: No oops, you won’t do it again: Mechanisms for self-correction in crowdsourcing, In ICML, 2016.
  10. / 30 मਖ਼ͱධՁͷஞ࣮࣍ߦ w 5VS,POUSPM੒Ռ෺ͷमਖ਼ͱධՁΛ܁Γฦ͢ΞϧΰϦζϜ ⿞मਖ਼ɾධՁͷཁෆཁΛɺ
 ඼࣭Λঢ়ଶͱ͢Δ෦෼؍ଌϚϧίϑܾఆաఔͰܾఆ ⿞े෼ʹमਖ਼Ͱ͖ͨͱ͜ΖͰऴྃ ΞϧΰϦζϜ੍ޚʹΑΓमਖ਼ͱධՁΛ܁Γฦ͢ 19

    ੒Ռ෺ मਖ਼͕ ඞཁʁ मਖ਼Λ ࣮ࢪ ධՁ͕ ඞཁʁ मਖ਼લޙͷ ൺֱ ऴྃ YES NO NO YES मਖ਼લޙͷͲͪΒ͔Λ࠾༻ P. Dai et al.: Decision-theoretic control of crowd-sourced workflows, In AAAI, 2010.
  11. / 30 ݕࡧΫΤϦʹΑΔઐ໳Ոൃݟ w ݕࡧ࿈ಈܕ޿ࠂ͔Β໰୊΁༠ಋ͠ઐ໳Ո͕Α͘࢖͏ݕࡧΫΤϦΛൃݟ ઐ໳Ո͕Α͘࢖͏ݕࡧΫΤϦΛख͕͔Γͱ͢Δ 22 Figure 3: Example

    ad to attract users time a user clicks on the ad and we record a conversion event, a the advertising system. This w the system to optimize the adv mizing the number of conversio contribution yield, instead of t the number of clicks. Although optimizing for conv Figure 1: Screenshot of the Quizz system. Intern Intern Fi healthline P. Ipeirotis and E. Gabrilovich: Quizz: targeted crowdsourcing with a billion (potential) users, In WWW, 2014.
  12. / 30 ਪનʹΑΔઐ໳Ոൃݟ w શถՕॴʹ੺͍෩ધΛઃஔ w ࠷ॳʹશͯͷ੺͍෩ધΛݟ͚ͭͨνʔϜʹ৆͕ۚࢧ෷ΘΕΔίϯςετ w ༏উνʔϜ͸ʮ෩ધΛݟ͚ͭͦ͏ͳਓʯΛଞऀ͔ΒͷਪનͰൃݟ %"31"3FE#BMMPPO$IBMMFOHF੺͍෩ધΛ୳͢ίϯςετ

    23 contributed articles platform for viral collaboration that used recursive incentives to align the public’s interest with the goal of win- ning the Challenge. This approach was inspired by the work of Peter S. Dodds et al.5 that found that success in us- ing social networks to tackle widely distributed search problems depends on individual incentives. The work of Mason and Watts7 also informed the use of financial incentives to motivate crowdsourcing productivity. The MIT team’s winning strategy was to use the prize money as a finan- cial incentive structure rewarding not only the people who correctly located balloons but also those connecting the finder to the MIT team. Should the team win, they would allocate $4,000 in prize money to each balloon. They Figure 1. Locations in the DARPA Red Balloon Challenge. Figure 2. Example recursive incentive-structure process for the MIT team. J. Tang et al.: Reflecting on the DARPA red balloon challenge, In Communications of the ACM, 2011.
  13. / 30 ڠௐ໰୊෼ׂ w 5VSLPNBUJD໰୊෼ׂɾղܾΛूஂͰߦ͏࢓૊Έ ⿞4UFQ໰୊Λ෼ׂ͢Δ ‣ े෼୯७ͳ෦෼໰୊ʹͳΔ·Ͱ෼ׂΛ܁Γฦ͢ ⿞4UFQ֤෦෼໰୊Λਓ͕ؒղ͘ ⿞4UFQ෦෼໰୊ͷղΛू໿͠࠷ऴతͳղΛग़ྗ

    ໰୊෼ׂΛूஂͰߦ͍େن໛ͳ໰୊Λղܾ͢Δ 27 ໰୊ྫɿɹʮʰӕ΋ํศʱ͸ਖ਼͍͔͠ʁʯ͕ςʔϚͷখ࿦จࣥච ෦෼໰୊ʮӕ͸Α͘ͳ͍ʯͱ͍͏ஈམΛࣥච ෦෼໰୊ʮඞཁͳӕ͕͋Δʯͱ͍͏ஈམΛࣥච
 ʜ A. Kulkarni et al.: Collaboratively crowdsourcing workflows with Turkomatic, In CSCW, 2012.
  14. / 30 ΞΠσΞͷ୳ࡧ w ूஂͰΞΠσΞͷબൈɾަࠥΛ܁Γฦ͢ Ҩ఻తΞϧΰϦζϜʹ฿ͬͯΞΠσΞΛ୳ࡧ͢Δ 29 4UFQ
 ୈੈ୅ͷݸମΛ֤͕ࣗੜ੒ 4UFQ


    ౤ථͰ༏ྑݸମΛબൈ͠
 ਓ͕ؒͦΕΛަࠥͯ࣍͠ੈ୅ͷݸମ Λੜ੒ 4UFQબൈɾަࠥΛ܁Γฦ͢ ྫɿࢠڙ޲͚ͷҜࢠͷσβΠϯ L. Yu and J. V. Nickerson: Cooks or cobblers? crowd creativity through combination, In CHI, 2011.