Upgrade to Pro — share decks privately, control downloads, hide ads and more …

[学生向け] ヒューマンコンピュテーション研究室紹介/ Human Computation L...

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

[学生向け] ヒューマンコンピュテーション研究室紹介/ Human Computation Lab. Introduction

Transcript

  1. ˔ ෳ਺ਓͷҙݟΛ౷߹͢Δํ๏ͱͯ͠ଟ਺ܾ͕޿͘༻͍ΒΕ͍ͯΔ ˔ ࢀՃऀʹ৴པੑͷ௿͍ਓ͕ଟ਺͍Δ৔߹ɺଟ਺ܾ͸্ख͘ػೳ͠ͳ͍ ˔ ֤ࣗͷ৴པੑΛ਺ཧϞσϧͰଊ͑ͯݡ͍ଟ਺ܾΛ࣮ݱ͢Δ ᶃݡ͍ू߹஌ͷ࣮ݱ 4 1 A

    A E C B A E A E D A D C D C B A E B E 2 A A B B B B B A D E E E E E C D B B E B 3 A A B D D D C E A E C C C D E D B D D E C 4 A A B B D A A C D E E A C E E B A B D A D B D A ଟ਺ܾ ໰୊ ଟ਺ܾ͕ࣦഊ͢Δྫʢ໰શͯͰਖ਼ղ͸"ͱ͢Δʣ J. Li, Y. Baba and H. Kashima: Hyper Questions: Unsupervised Targeting of a Few Experts in Crowdsourcing, In CIKM, 2017.
  2. ᶄݡ͍ධՁͷ࣮ݱ 5 ώτ΍ϞϊΛෳ਺ਓ͕ධՁ͢Δ৔߹ʹ 
 ධՁऀͷ৴པੑΛ਺ཧϞσϧͰଊ͑Δ͜ͱͰਖ਼֬ͳධՁΛ࣮ݱ ධՁର৅ ධՁऀ ఺ ධՁऀ৴པੑΛߟྀͯ͠ 


    ඃධՁऀͷೳྗΛਪఆ Y. Baba and H. Kashima: Statistical Quality Estimation for General Crowdsourcing Tasks, In KDD, 2013. 
 T. Sunahase et al.: Pairwise HITS: Quality Estimation from Pairwise Comparisons in Creator-Evaluator Crowdsourcing Process, In AAAI, 2017.
  3. ˔ ໰୊ղܾͷΞΠσΞΛूஂͰଟ਺ྻڍ ˔ ਓؒ΁ͷ໰͍߹ΘͤΛར༻ͯ͠ޮ཰తʹΞΠσΞΛબൈɾՄࢹԽ ᶅूஂ໰୊ղܾࢧԉ 6 ΞΠσΞީิ ༗๬ީิ Ձ஋؍ͷଟ༷ੑΛ 


    ߟྀͨ͠ΞΠσΞબൈ J. Li, Y. Baba, and H. Kashima: Simultaneous clustering and ranking from pairwise comparisons, In IJCAI, 2018 Y. Baba, J. Li, and H. Kashima: CrowDEA: Multi-view Idea Prioritization with Crowds, In HCOMP, 2021.
  4. ᶆਓؒࢀՃܕػցֶश 7 ਓؒΛಛ௃நग़ثͱͯ͠׆༻ ਓؒΛ("/ͷࣝผثͱͯ͠׆༻ onal Institute of Technology, Tokuyama College,

    Japan. Information Science and Technology, The University of Tokyo, Japan. ineering, Information and Systems, University of Tsukuba, Japan. CT enerative adversarial network ion as a discriminator. A ba- ent a real-data distribution by uishes real and generated data. esent the outside of a real-data ception, humans can recognize essed (i.e., a non-existent hu- human-acceptable distribution ne and cannot be modeled by an-acceptable distribution, we enerator training algorithm by ack-boxed discriminator. The training by using a computer . We evaluate our HumanGAN demonstrate that it can repre- Prior distr. Generated data Generator Discriminator Natu- ral Train to fool computer-based discriminator. GAN Training Distr. of training data Generation Distr. of human perception Fig. 1. Comparison of basic GAN and proposed HumanGAN. Basic GAN trains generator by fooling DNN-based discriminator (i.e., computer-based discriminator), and generator finally represents training-data distribution. In comparison, HumanGAN trains gener- ਓؒΛ᱐͢ੜ੒ثΛֶश͢Δ͜ͱͰ ਓؒͷײੑΛऔΓࠐΉ ྫɿϞωͱγεϨʔͷֆͷ෼ྨ ࣝผثͱͯ͠ਓؒΛ༻͍Δ K. Fujii, Y. Saito, S. Takamichi, Y. Baba, and H. Saruwatari: HumanGAN: Generative adversarial network with human-based discriminator and its evaluation in speech perception modeling. In ICASSP, 2020.
  5. ᶇೝ஌όΠΞεͷิਖ਼ 8 3.13 ਖ਼͍͠ධՁ 2 Ώ͕ΜͩධՁ ධՁͷঢ়گ ೝ஌όΠΞε ྫɿडݧੜͷ໘઀ Ձ஋ؔ਺

    ධՁର৅ ໘઀ͷॱ൪΍άϧʔϓߏ੒౳ͷධՁͷঢ়گʹΑΓධՁ͕Ώ͕Ή ೝ஌όΠΞεͷӨڹΛऔΓআ͖ਖ਼͍͠ධՁΛ༧ଌ͢Δ JST͖͕͚͞ʮߦಈܦࡁֶʹجͮ͘ݸਓతɾूஂతධՁͷ਺ཧϞσϧͷ։ൃʯ
  6. ˔ ૬ޓఴ࡟ ˙ ྫ͑͹ӳ࡞จΛੜె͕ޓ͍ʹ࠾఺ɾఴ࡟͠߹͏ ˙ ड͚ͨ఺਺͚ͩͰ͸ͳ͘༩͑ͨఴ࡟ͷྑ͠ѱ͠΋ར༻ͯ͠ੜెͷशख़౓Λਪఆ͢Δ ˔ ػցڭࣔ ˙ ʮػց͕ਓؒΛڭҭ͢ΔʯͨΊͷ࿮૊Έ

    ˙ ੜెͷशख़౓ʹ߹Θͤͯద੾ͳڭࡐΛఏࣔ͢Δ ᶈڭҭࢧԉ 9 T. Sunahase, Y. Baba and H. Kashima: Statistical modeling of peer correction and peer assessment, In EDM, 2019. Y. Mingzhe, and Y. Baba: Iterative machine teaching without teachers, arXiv:2006.15339. We observe that sometimes there is inconsistency between a grade and a correction; for example, a grader provides a high grade with a submission but she corrects many errors. We observed the occasional inconsistency between a grade and the correction; for example, a grader provides a high grade for a submission, but many errors were corrected. 80 点 ૬ޓఴ࡟ ఴ࡟લ ఴ࡟ޙ ػցڭࣔ
  7. ˔ ݚڀ͸ɺ৽͍͠ൃݟʹΑΓਓྨͷ஌ࣝͷ૯ྔΛ૿΍͢׆ಈɻ 
 ʮ͜Ε·Ͱͷਓؒͷ஌ࣝʯΛ૯ಈһͯ͠ʮ৽͍͠ࣄ࣮΍ํ๏ʯΛൃݟ͠ੈͷதʹ఻͑Δ ˙ ط஌ͷ݁Ռ͸ϑϧ׆༻͢΂͠ɿʮڊਓͷݞʹ৐Δʯ ˙ ʮ৽نੑʯ͕ٻΊΒΕΔɹɹɿʮंྠͷ࠶ൃ໌ʯ͸ֶज़ݚڀͰ͸ͳ͍ ˔ ݚڀ͸૯߹֨ಆٕɺ༷ʑͳεΩϧ͕ٻΊΒΕΔɻ

    
 ৬ۀݚڀऀͱڠಇͰͷݚڀ׆ಈΛ௨ͯ͜͡ΕΒͷεΩϧͷशಘΛ໨ࢦ͢ ˙ ໰୊ൃݟྗɾղܾྗɺΠϯϓοτɾΞ΢τϓοτྗɺνʔϜϫʔΫྗ ˔ ಛʹΞΠσΞͷΞ΢τϓοτྗͷҭ੒Λॏࢹ ˙ ΞΠσΞΛ۩ମԽ͢Δྗ ˙ ΞΠσΞͷՁ஋ΛઆಘྗΛ࣮࣋ͬͯূ͠ଞਓʹ఻͑Δྗ ݚڀΛ௨ֶͯ͠ΜͰ΄͍͜͠ͱ 10
  8. ˔ ೥ੜय़ֶظ ˙ ษڧձΛ௨ͯ͡ػցֶशͷجૅ஌ࣝΛशಘ͢Δ  աڈͷษڧձͷ୊ࡐɿʮ౷ܭతػցֶशͷ਺ཧ໰ʯʮϕΠζਂ૚ֶशʯ 
 ʮϕΠζਪ࿦ʹΑΔػցֶशೖ໳ʯʮ͜ΕͳΒ෼͔Δ࠷దԽ਺ֶʯ ˙ ֤ࣗͷڵຯΛ୳্ͬͨͰݚڀςʔϚΛઃఆ͢Δ

    ˙ ࿦จΛಡΉ܇࿅Λ͢Δ ˔ ೥ੜळֶظ ˙ ࢼߦࡨޡΛ܁Γฦ͠ఏҊख๏Λվળ͢Δ ˙ ద੾ͳ࣮ݧઃఆΛఆΊͯఏҊख๏ͷޮՌΛݕূ͢Δ ˙ ଔۀ࿦จͱͯ͠੒ՌΛ·ͱΊΔͱͱ΋ʹࠃࡍձٞ౳΁ͷ౤ߘ४උΛ͢Δ ݚڀͷਐΊํ 16
  9. ˔ 2ݚڀςʔϚ͸ࣗ෼ͰܾΊΔඞཁ͕͋Γ·͔͢ʁ ˙ "ଔۀݚڀͰ͸ڭһ͕ςʔϚΛܾΊΔ͜ͱ͕ଟ͍Ͱ͕࣋ͪ͢ࠐΈ΋׻ܴ͠·͢ ˔ 2ݚڀ͸େมͰ͔͢ʁ ˙ ݚڀ੒Ռ͕ग़Δ·Ͱ͸ଟ͘ͷࢼߦࡨޡ͕ඞཁͳͷͰେมͰ͕͢ 
 ͦͷ෼੒Ռ͕ग़ͨ࣌ͷتͼ΋େ͖͍Ͱ͢

    ˙ ਺ֶ΍ϓϩάϥϛϯάೳྗෆ଍ͷ͍ͤͰ੒Ռ͕ग़ͳ͍ɺͱߟ͕͑ͪͳਓ͸ 
 ਏ͍ࢥ͍Λ͢Δ৔߹͕͋Γ·͢ ˙ ݚڀ੒ՌΛग़͢ʹ͸ࢼߦࡨޡΛޮ཰తʹ܁Γฦͨ͢Ίͷ޻෉ͷํ͕େࣄͰ͢ɻ 
 ࣗ෼ͷख࣋ͪͷεΩϧͷதͰ্खͳ޻෉ͷ࢓ํΛߟ͍͑ͯ͘ͱྑ͍Ͱ͢ ˔ 2ݚڀࣨ͸Ͳ͏બ΂͹ྑ͍ͷʁ ˙ "ଔݚͰ͸ʮࣗ෼͕Ұ൪੒௕Ͱ͖ͦ͏ͳݚڀࣨʯΛબͿͷ͕ྑͦ͞͏Ͱ͢ ݚڀͷਐΊํ 17
  10. ˔ ҎԼͷ೔ఔͰ࿦จಡΈձΛެ։Ͱ࣮ࢪ͠·͢ɻ 
 ݚڀࣨͷงғؾΛ஌Δྑ͍ػձͳͷͰͥͻ͝ࢀՃ͍ͩ͘͞ 
    ʙ!.JDSPTPGU5FBNT ˔

    ౰ݚڀࣨΛࢤ๬͢Δ৔߹͸Ͱ͖Δ͚ͩ໘ஊʹདྷ͍ͯͩ͘͞ ˔ ಡΈձɾ໘ஊͷৄࡉ͸UXJUUFSDPNCBCBMBCMBCΛࢀর͍ͯͩ͘͠͞ ݚڀࣨ഑ଐʹ޲͚ͯ 18